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ABSTRACT Although enteric multianalyte syndromic panels are increasingly em-
ployed, direct comparisons with traditional methods and the inclusion of host phe-
notype correlations are limited. Luminex xTAG gastrointestinal pathogen panel (GPP)
and culture results are highly concordant. However, phenotypic and microbiological
confirmatory testing raises concerns regarding the accuracy of the GPP, especially
for Salmonella spp. A total of 3,089 children with gastroenteritis submitted stool
specimens, rectal swab specimens, and clinical data. The primary outcome was bac-
terial pathogen detection agreement for shared targets between culture and the Lu-
minex xTAG GPP. Secondary analyses included phenotype assessment, additional
testing of GPP-negative/culture-positive isolate suspensions with the GPP, and in-
house and commercial confirmatory nucleic acid testing of GPP-positive/culture-
negative extracts. The overall percent agreement between technologies was �99%
for each pathogen. Salmonella spp. were detected in specimens from 64 partici-
pants: 12 (19%) by culture only, 9 (14%) by GPP only, and 43 (67%) by both tech-
niques. Positive percent agreement for Salmonella spp. was 78.2% (95% confidence
interval [CI], 64.6%, 87.8%). Isolate suspensions from the 12 participants with speci-
mens GPP negative/culture positive for Salmonella tested positive by GPP. Speci-
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mens GPP positive/culture negative for Salmonella originated in younger children
with less diarrhea and more vomiting. GPP-positive/culture-negative specimen ex-
tracts tested positive using additional assays for 0/2 Campylobacter-positive speci-
mens, 0/4 Escherichia coli O157-positive specimens, 0/9 Salmonella-positive speci-
mens, and 2/3 Shigella-positive specimens. For both rectal swab and stool samples,
the median cycle threshold (CT) values, determined using quantitative PCR, were
higher for GPP-negative/culture-positive samples than for GPP-positive/culture-
positive samples (for rectal swabs, 36.9 [interquartile range {IQR}, 33.7, 37.1] versus
30.0 [IQR, 26.2, 33.2], respectively [P � 0.002]; for stool samples, 36.9 [IQR, 33.7, 37.1]
versus 29.0 [IQR, 24.8, 30.8], respectively [P � 0.001]). GPP and culture have excellent
overall agreement; however, for specific pathogens, GPP is less sensitive than culture
and, notably, identifies samples false positive for Salmonella spp.

KEYWORDS culture, Salmonella, enteric bacteria, nucleic acid technology,
transmissible gastroenteritis virus

Bacterial enteric pathogens continue to cause substantial morbidity worldwide (1, 2).
Although conventional stool culture is classically used to identify bacterial entero-

pathogens in clinical microbiology laboratories, such methods have drawbacks, includ-
ing prolonged turnaround times and a reliance on diverse selective and enrichment
media, identification tests, and expertise (3). In contrast, nucleic acid amplification
techniques (NAAT) can detect multiple pathogens within hours (4). However, questions
remain about their postmarket accuracy when evaluating a range of enteropathogens
across diverse populations and regions (5). Published data have limited relevance to
North American children, as most reports have emerged from low- and middle-income
countries (5–7), focused primarily on adults (4, 6, 8–12), did not compare NAAT results
to standard culture results (7–10, 13), applied inconsistent testing protocols (4, 8, 11,
14), or analyzed single pathogens (15). No studies have included host phenotypes in
interpreting discordant results.

Here, we determine the agreement for the bacterial pathogens of interest between
stool bacterial culture and the Luminex xTAG gastrointestinal pathogen panel (GPP;
Luminex Molecular Diagnostics, Austin, TX, USA) NAAT platform in a systematically
tested cohort of children with acute gastroenteritis in Alberta, Canada. Secondarily, we
evaluate discordant samples by analyzing clinical phenotypes and determine GPP and
culture accuracy through additional testing.

MATERIALS AND METHODS
Population. This prospective cohort study was conducted as part of the Alberta Provincial Pediatric

EnTeric Infection TEam (APPETITE) project (16). Eligible children were enrolled through the Alberta
Children’s Hospital (Calgary, AB, Canada) and Stollery Children’s Hospital (Edmonton, AB, Canada)
emergency departments (EDs) and a provincial nursing triage telephone advice line (Health Link) (17).

Eligible participants were �18 years of age and had had �3 episodes of vomiting and/or diarrhea in
the preceding 24 h and �7 days of symptoms. Children were excluded if they were enrolled in the
previous 14 days, unable to participate in follow-up, had significant psychiatric comorbidities or neutro-
penia, or were critically ill. Children recruited through Health Link did not require medical attention, and
supportive care at home was recommended.

Approval was granted by the University of Calgary and University of Alberta research ethics boards.
Caregivers provided informed consent; assent was obtained when appropriate.

Outcome measures. The primary outcome was agreement, measured as overall percent agreement,
positive percent agreement (PPA), and Cohen’s �, between stool bacterial culture and the GPP for
bacterial pathogens sought by both detection methods: Campylobacter spp., Escherichia coli O157,
Salmonella spp., and Shigella spp. Yersinia enterocolitica was not included because of negligible detection
rates.

Secondary outcomes focused on Salmonella spp. and consisted of a comparison of the clinical
phenotypes of patients with concordant and discordant results and three confirmatory tests. First,
GPP-negative/culture-positive isolates were tested using the GPP. Second, an in-house real-time quan-
titative PCR (RT-qPCR) assay was performed on nucleic acid extracts of specimens GPP positive/culture
positive and GPP negative/culture positive for Salmonella spp. to confirm the initial concordant result
and to evaluate the relationship between the cycle threshold (CT) value and pathogen identification.
Third, GPP-positive/culture-negative specimens were tested with the in-house RT-qPCR and a different
commercial assay (the Prodesse ProGastro SCSS assay; Hologic Inc., San Diego, CA) (18) on a SmartCycler
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II instrument (Cepheid, Sunnyvale, CA) to confirm or refute the presence of Salmonella spp., Shigella spp.,
and Shiga toxin-producing E. coli (STEC) (see “Confirmatory testing” below for details).

Specimen acquisition. Two rectal swab specimens were obtained from each ED participant
(FLOQSwab; Copan Italia, Brescia, Italy) (19): one was placed in 2 ml of modified Cary-Blair transport
medium and used for bacterial culture, and the other was placed into a sterile tube without medium and
tested (off-label) using the GPP. Stool samples were collected in sterile containers (V302-F; Starplex
Scientific Inc., ON, Canada). If they were not provided prior to discharge, stool samples were collected by
the parents at home and placed in the same sterile containers described above, which were retrieved by
a courier service.

Health Link participants received specimen collection kits by courier. Specimens were collected per
ED protocols and were returned to the clinical microbiology laboratory by a study-funded courier service
within 12 h of collection. All specimens were placed in coolers with ice packs while in transit to the
laboratory. Bacterial cultures were inoculated per Public Health Laboratory (ProvLab) protocols as soon
as possible following specimen arrival, after which both the rectal swabs and stool specimens were
stored at �80°C until molecular testing was performed.

Specimen processing. (i) Culture. The FLOQSwab rectal swab specimens were vortexed for 30 s,
and 100 �l of transport medium was transferred onto MacConkey agar with crystal violet (Dalynn
Biologicals, Calgary, AB, Canada), sheep blood agar (Oxoid, Thermo Fisher Scientific, Waltham, MA, USA),
Hektoen agar (Dalynn Biologicals, Calgary, AB, Canada), cefsulodin, irgasan, and novobiocin agar (Dalynn
Biologicals, Calgary, AB, Canada), CHROMagar O157 with 2.5 mg/liter potassium tellurite (CHROMagar,
Paris, France), and Campylobacter blood-free selective agar (Dalynn Biologicals, Calgary, AB, Canada)
plates. Overnight enrichment was performed by adding �200 �l of bulk stool to mannitol selenite broth
followed by culture on Salmonella-Shigella (Dalynn Biologicals, Calgary, AB, Canada) and Wilson-Blair
(ProvLab) agar. Campylobacter plates were incubated microaerobically (in 6.0% O2, 7.1% CO2, 3.6% H2,
and 83.3% N2 at 42°C for up to 72 h); all other media were incubated in atmospheric oxygen (35°C, 24 h).
A quantity of stool samples of �1 g was considered insufficient and not subjected to culture. Identifi-
cation of isolates was performed per routine laboratory confirmation protocols using an API 20E system
(bioMérieux Inc., USA) in ProvLab, Calgary, AB, Canada, while a Vitek MS system (bioMérieux, St-Laurent,
QC, Canada) and supplemental biochemical methods were used in ProvLab, Edmonton, AB, Canada.
Salmonella serotyping was performed using the Check & Trace Salmonella assay (Check-Points, Nether-
lands) (20). All positive cultures were skimmed and frozen at �80°C.

(ii) Molecular diagnostics. The GPP is a qualitative multiplex molecular-based syndromic panel that
identifies nine bacterial targets (Campylobacter spp., Clostridioides [formerly Clostridium] difficile toxin A/B,
E. coli O157, enterotoxigenic E. coli [ETEC], Shiga toxin-producing E. coli [STEC] stx1 and stx2, Salmonella
spp., Shigella spp., Vibrio cholerae, Yersinia spp.) (8, 21). GPP testing was performed at a single site
(ProvLab, Edmonton, AB, Canada). Immediately before nucleic acid extraction, stools were thawed and
aliquots were made, and the aliquots were then refrozen at �80°C. Rectal swab samples remained frozen
until extraction. Samples were batch tested two to three times a week, depending on specimen volumes.

The FLOQSwab rectal swab specimens were vortexed in 500 �l of NucliSENS lysis buffer, and 300 �l
of this lysate was added to 700 �l of lysis buffer in Bertin SK38 solid grinding lysis bead tubes with 10
�l of bacteriophage MS2 (each from Luminex Molecular Diagnostics, Toronto, ON, Canada). Similarly, 100
to 150 mg or 100 �l of solid or liquid stool, respectively, was suspended in a final volume of 1 ml of lysis
buffer. Two hundred microliters of prepared lysates was extracted using a NucliSENS easyMAG system
(bioMérieux, Marcy l’Etoile, France). Total nucleic acids were eluted in a volume of 70 �l and tested per
the recommendations for the xTAG GPP kit. All extracts were stored at �80°C until confirmatory testing.

Confirmatory testing. (i) Testing of GPP-negative/culture-positive Salmonella isolates. Salmo-
nella species isolates were cultured overnight (37°C) on sheep blood agar, and a single colony was
transferred into Bertin SK38 tubes containing 1 ml of NucliSENS lysis buffer. Lysis and extraction were
performed per the recommendations for the testing of stool by the xTAG GPP.

We also performed RT-qPCR using a TaqMan chemistry-based quantitative PCR (qPCR) targeting a
conserved region of the Salmonella invA gene. The forward primer (CTGCGGTACTGTTAATTAC), reverse
primer (GAACGTGGCGATAATTTC), and dual-quenched probe (6-FAM-CGGCATCGG/ZEN/CTTCAATCAAG
A-Iowa Black FQ; where 6-FAM is 6-carboxyfluorescein) (Integrated DNA Technologies [IDT], Coralville, IA,
USA) were designed using Beacon Designer (version 8.20) software (Premier Biosoft, Palo Alto, CA, USA).
Five-microliter nucleic acid extracts were used in a 20-�l total qPCR volume with 2� PrimeTime gene
expression master mix (IDT, Coralville, IA, USA) with a 0.222 �M final probe concentration and a 0.333 �M
final primer concentration. A fast cycling protocol with an initial 95°C polymerase activation step for
3 min, followed by 40 cycles of 95°C for 5 s and 60°C for 30 s, was performed on an Applied Biosystems
7500 Fast instrument. Positive controls with DNA extracted from Salmonella enterica serovar Enteritidis
and no-template controls were integrated into each qPCR run. qPCR assay optimization included
evaluation against a specificity panel of four clinical Salmonella serotypes (Salmonella Enteritidis, Salmo-
nella Heidelberg, Salmonella Typhimurium, Salmonella Newport), Yersinia enterocolitica (ATCC 9610),
Shigella sonnei (clinical isolate A79), and Shigella flexneri (ATCC 12022).

(ii) RT-qPCR with nucleic acid extracts of GPP-positive/culture-positive specimens. As described
above for GPP-negative/culture-positive Salmonella isolates, we performed RT-qPCR to confirm the result
for GPP-positive/culture-positive specimens and to validate our assay.

(iii) Evaluation of GPP-positive/culture-negative specimens. The frozen DNA extracts used on the
Luminex xTAG GPP were thawed and tested using the Prodesse ProGastro SCSS assay (Hologic Inc., San
Diego, CA) on a SmartCycler II instrument (Cepheid, Sunnyvale, CA) per manufacturer guidelines. The
latter tests for Salmonella, Shigella, and Campylobacter nucleic acids and Shiga toxin 1 and 2 genes (18).
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As described above, we performed RT-qPCR to evaluate specimens GPP positive/culture negative for
Salmonella spp. We performed a similar evaluation for Shigella spp., STEC, and E. coli O157. The primers
and probes used are described in Appendix S1 in the supplemental material.

Statistical analysis. Test results were categorized as positive or negative, with no indeterminant
readings. We did not differentiate between specimen types because rectal swabs have diagnostic
capabilities similar to those of stool samples (19). Only participants whose specimens underwent culture
and GPP testing were analyzed.

Overall percent agreement between the GPP and bacterial culture was determined for the pathogens
of interest (22). For assessing positive response rates, PPA was calculated as [(A)/(A � C)] � 100%, where
A is the number of specimens with concordant positive results and C is the number of specimens with
GPP-negative/culture-positive results (22). PPA and overall percent agreement were chosen over sensi-
tivity and specificity per U.S. Food and Drug Administration guidelines when evaluating diagnostic tests
in the absence of a gold standard (22). Cohen’s � value was calculated to measure the extent of
agreement (23). Clinical characteristics were compared using a chi-square test and the Kruskal-Wallis H
test, as appropriate. The Mann-Whitney U test was used to compare RT-qPCR CT values of the rectal swab
and stool specimen groups GPP positive/culture positive and GPP negative/culture positive for Salmo-
nella spp.

We did not use imputation because data from only seven participants were incomplete; we did
include all available data from these participants in our analysis. SPSS (version 24.0; IBM Corp., Armonk,
NY) was used to perform analyses. A single 2-tailed P value was used to assess differences among all
three groups, and the significance level was set at 0.05.

RESULTS

Specimens from 3,089 (88.0%) of the 3,511 participants enrolled between 12 De-
cember 2014 and 31 March 2018 underwent GPP and bacterial culture (Fig. 1).

FIG 1 Flow diagram of potential study participants and enteropathogen detection methods. GPP, gastro-
intestinal pathogen panel.
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Ninety-one (3.0%) and 88 (2.9%) of these specimens, respectively, were positive for at
least one of Campylobacter spp., E. coli O157, Salmonella spp., or Shigella spp.

Primary outcome. The overall percent agreement was �99% for each individual
bacterial target and 98.9% (95% confidence interval [CI], 98.5%, 99.3%) for all targets
combined (Table 1). PPA ranged from 78.2% for Salmonella spp. (95% CI, 64.6%, 87.8%)
to 100% for E. coli O157 (95% CI, 51.7%, 100%). Overall, PPA was 83.0% (73/88; 95% CI,
73.1%, 89.8%). Cohen’s � was �0.70 for E. coli O157, Shigella spp., and Salmonella spp.
and almost perfect for Campylobacter spp. (� � 0.89).

Secondary outcomes for Salmonella. The most frequently identified pathogen,
Salmonella spp., was detected in 64 participants (Fig. 2). Salmonella spp. were detected
in 80% (51/64) of submitted rectal swabs (positive results, n � 5 for GPP only, n � 12 for
culture only, n � 34 for both) and 84% (43/51) of submitted stool specimens (positive
results, n � 7 for GPP only, n � 8 for culture only, n � 28 for both). Salmonella Enteritidis
accounted for 48% (31/64) of the Salmonella spp. identified by culture (Table 2).
Sixty-seven percent (43/64) of the participants with Salmonella spp. detected in swab
or stool produced concordant GPP and culture test results; 19% (12/64) were GPP
negative/culture positive, and 14% (9/64) were GPP positive/culture negative. Rectal
swabs and stool samples had similar detection rates for Salmonella spp., with the
exception of GPP-positive/culture-negative specimens, where only 33% (3/9) of the
rectal swabs but 88% (7/8) of the stool samples were positive (Table 3).

Participants in the group GPP positive/culture positive for Salmonella spp. were
older (median age, 38 months [interquartile range {IQR}, 13, 63 months]) than those in
the GPP-positive/culture-negative group (median age, 7 months [IQR, 5, 16 months])
(Table 4). The latter group of children had significantly more vomiting episodes in the
24 h before enrollment (median, 6 [IQR, 2, 13]) than those with concordant positive
specimens (median, 1 [IQR, 0, 3]) or GPP-negative/culture-positive specimens (median,
1 [IQR, 0, 4]). All 43 GPP-positive/culture-positive specimens were provided by children
who presented with diarrhea; only 44% (4/9) of GPP-positive/culture-negative children
had had diarrhea prior to enrollment (P � 0.001). The maximum number of diarrheal
episodes per 24-h period before enrollment was greater in children with specimens
with concordant results (median, 10 [IQR, 7, 15]) than in children with GPP-positive/
culture-negative specimens (median, 0 [IQR, 0, 9]) (P � 0.002).

Confirmatory testing. Five of 5 (100%) stool specimens and 8/8 (100%) rectal swab
specimens GPP negative/culture positive for Salmonella isolates were positive by
confirmatory testing by GPP (Fig. 2). Salmonella qPCR of GPP-negative/culture-positive
extracts was positive for 4/12 (25%) rectal swab specimens and 1/5 (20%) stool
specimens. Of the concordant GPP-positive/culture-positive specimens, 36/38 (94.7%)

TABLE 1 PPA and overall percent agreement between the Luminex xTAG GPP and bacterial culture of stool and rectal swab specimensa

Bacterial targets
Luminex xTAG
GPP result

No. of specimens with
the following bacterial
culture result:

PPA (95% CI)
Overall %
agreement (95% CI) Cohen’s �Positive Negative

Campylobacter spp. Positive 20 2 87.0 (65.3, 96.6) 99.8 (99.6, 99.9) 0.89
Negative 3 3,064

Escherichia coli O157 Positive 6 4 100 (51.7, 100) 99.9 (99.6, 99.9) 0.75
Negative 0 3,079

Salmonella spp. Positive 43 9 78.2 (64.6, 87.8) 99.3 (98.9, 99.6) 0.80
Negative 12 3,025

Shigella spp. Positive 5 3 100 (46.3, 100) 99.9 (99.7, 99.97) 0.77
Negative 0 3,081

Total Positive 73 18 83.0 (73.1, 89.8) 98.9 (98.5, 99.25) 0.81
Negative 15 2,983

aThe bacterial targets included in this table were identified by both the Luminex xTAG gastrointestinal pathogen panel (GPP) and bacterial culture.
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stool samples and 39/43 (90.7%) rectal swab specimens were positive on qPCR, with
median cycle threshold (CT) values being 29.0 (IQR, 24.8, 30.8) for stool and 30.0 (IQR,
26.2, 33.2) for rectal swabs (P � 0.02 for the 32 paired specimens). Median CT values
were higher for GPP-negative/culture-positive than for GPP-positive/culture-positive
Salmonella rectal swab (36.9 [IQR, 33.7, 37.1] versus 30.0 [IQR, 26.2, 33.2]; P � 0.002) and
stool specimen extract (36.9 [IQR, 33.7, 37.1] versus 29.0 [IQR, 24.8, 30.8]; P � 0.001).

Retesting of GPP-positive/culture-negative specimen extracts yielded the same
results on both the Prodesse ProGastro SCSS and in-house qPCR assays (except for
Campylobacter spp., for which in-house primers were not developed): 0/4 E. coli O157,
0/9 Salmonella species, and 2/3 Shigella species isolates were positive for the bacteria
detected initially on the GPP. Both Campylobacter species-positive specimens were
negative on commercial PCR testing (Table 5).

DISCUSSION

We found excellent overall agreement between the GPP and bacterial culture. For
Salmonella spp., however, GPP-positive/culture-negative children differed significantly
from those for whom the results were concordant. Confirmatory analyses demonstrated
that GPP-positive/culture-negative specimens likely are false positive, while GPP-
negative/culture-positive specimens reflect the inability of the assay to detect Salmo-
nella spp. when small quantities of nucleic acid are present.

A meta-analysis comparing a variety of multiplex gastrointestinal panels with stan-
dard microbiology methods reported that PPA ranged from 68% when NAAT methods
provide the benchmark to 93% when conventional methods are considered the gold
standard (24). However, the high PPA obtained when conventional methods served as
the benchmark was inconsistent across pathogens, a concern that we identified as it

FIG 2 Confirmatory testing flow diagram of Salmonella species-positive specimens. All available specimens
were tested. Participants may have submitted both a swab and a stool sample. GPP, gastrointestinal
pathogen panel; qPCR, quantitative PCR; †, GPP-negative/culture-positive samples were not retested with
the commercial assay.
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relates to Salmonella spp. A Vietnamese report identified a lack of specificity of
Salmonella species detection using the GPP (5), potentially due to a high rate of
Salmonella carriage (25) or amplification of DNA from non-Salmonella strains. In a U.S.
multicenter study, 14% of Salmonella spp. detected by GPP could not be confirmed by
gold standard methods (26).

Given that specimens GPP negative/culture positive for Salmonella had higher CT

values than GPP-positive/culture-positive specimens, our data do not support the
hypothesis that culture fails to detect pathogens because it is less sensitive. While
prolonged storage under suboptimal conditions may permit nucleic acid degradation
(27) and, hence, a lower yield on NAAT platforms, in our study, all samples were
processed within 7 days of receipt and both aliquots and extracts were stored at �80°C
at all times. This approach led to our finding a PPA of 78%, which is aligned with
previous reports (27, 28). While the inability to detect some pathogens on the GPP
could reflect inefficient nucleic acid extraction or inhibition, many of the same nucleic
acid extracts yielded positive results with our in-house assay and the alternate platform.
Our RT-qPCR results and our retesting of culture-positive Salmonella isolates on the GPP
lead us to believe that the discrepancies represent a sensitivity threshold, with there

TABLE 2 Serotype analysis of Salmonella species-positive specimens on the Luminex xTAG GPP and bacterial culture

Salmonella serovar

No. (%) of specimens with the following result:

Total
Luminex xTAG GPP
positive/culture negative

Luminex xTAG GPP
negative/culture positive

Luminex xTAG GPP
positive/culture positive

Untyped or nontypeablea 10 (15.6) 9 0 1
Salmonella Agona 1 (1.6) 0 0 1
Salmonella Alachua 1 (1.6) 0 0 1
Salmonella Anatum 1 (1.6) 0 1 0
Salmonella Bareilly 1 (1.6) 0 0 1
Salmonella enterica subsp. enterica 4 (6.3) 0 0 4
Salmonella enterica subsp. salamae (II)55:k:z39 1 (1.6) 0 0 1
Salmonella Enteritidis 31 (48.4) 0 7 24
Salmonella Heidelberg 1 (1.6) 0 0 1
Salmonella Infantis 2 (3.1) 0 1 1
Salmonella Newport 1 (1.6) 0 0 1
Salmonella Reading 2 (3.1) 0 0 2
Salmonella Rubislaw 1 (1.6) 0 0 1
Salmonella Schwarzengrund 1 (1.6) 0 0 1
Salmonella Thompson 1 (1.6) 0 0 1
Salmonella Typhi 1 (1.6) 0 0 1
Salmonella Typhimurium 3 (4.7) 0 2 1
Salmonella Virchow 1 (1.6) 0 1 0

Total 64 (100) 9 (14.1) 12 (18.8) 43 (68.8)
aOf these, isolates were detected in only 9/10 specimens by the Luminex xTAG GPP. The final specimen was positive for a Salmonella sp. on GPP and culture, but the
serovar was not identified.

TABLE 3 Comparison of rectal swab and stool specimen results for Salmonella spp. grouped by diagnostic testing approachb

Salmonella species-positive group Specimen type

No. of specimens with the indicated result/total no. of specimens
tested (%)

Luminex xTAG
GPP positive Culture positive qPCR positive

GPP positive/culture positive Stool 34/38 (89.5) 31/38 (81.6) 36/38 (94.7)
Rectal swab 36/43 (83.7) 38/43 (88.4) 39/43 (90.7)

GPP positive/culture negative Stool 7/8 (87.5)a 0/8 (0) 0/8 (0)
Rectal swab 3/9 (33.3)a 0/9 (0) 0/9 (0)

GPP negative/culture positive Stool 0/5 (0) 5/5 (100) 1/5 (20.0)
Rectal swab 0/12 (0) 8/12 (66.7) 4/12 (33.3)

aP � 0.05. No other comparisons achieved statistical significance.
bGPP, gastrointestinal pathogen panel; qPCR, quantitative PCR.
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being less target pathogen nucleic acid present in the GPP-negative/culture-positive
group.

The clinical presentations of participants GPP positive/culture negative for Salmonella
spp. were at variance with those of individuals with classic Salmonella infection (29).
Retesting of these specimens using commercial and in-house assays provided negative
results, indicating that the GPP results were likely false positive. All specimens GPP positive/
culture negative for E. coli O157 were also negative when tested with an alternate
commercial and in-house assay, suggesting an overall suboptimal specificity for these
targets. Concerns regarding false positives due to cross-reactivity with commensal bacteria
have also been reported with the BioFire FilmArray gastrointestinal panel (4). Other possible
causes for false positives on the NAAT include cross contamination, amplification of a target
from a non-Salmonella strain, or detection of Salmonella spp. in a child who is a carrier.
Contamination can be addressed by engineering or procedure modifications, and non-
Salmonella species amplification can be minimized by including corroborative loci. For
example, in the case of E. coli O157, the presence of conserved loci for intimin (eae) (30) and
a component of the O157 side chain synthesis cluster (rfbE) (31) increases confidence that
a Shiga toxin gene signal originates in a bona fide pathogen. Nonetheless, these findings
highlight the concern regarding false-positive results when a multiplex NAAT is employed

TABLE 4 Clinical characteristics and enteropathogen codetection among participants with concordant and discordant Salmonella species
test resultsg

Clinical feature

Luminex xTAG GPP
positive/culture positive

Luminex xTAG GPP
positive/culture
negative

Luminex xTAG GPP
negative/culture
positive

P
value

No. of
specimens Value

No. of
specimens Value

No. of
specimens Value

Age (mo)b 43 38 (13, 63) 9 7 (5, 16) 12 31 (11, 66) 0.006
Time since symptom onset (h)b,c 43 84 (45, 102) 9 49 (13, 66) 12 56 (31, 87) 0.05
No. (%) of patients with vomitinga 43 23 (54) 9 7 (78) 12 6 (50) 0.44
Maximum no. of vomiting episodes in any 24-h periodb 43 1 (0, 3) 9 6 (2, 13) 12 1 (0, 4) 0.02
Duration of vomiting at time of enrollment (h)b 43 2 (0, 75) 9 16 (2, 66) 12 0.2 (0, 37) 0.47
No. (%) of patients with diarrheaa 43 43 (100) 9 4 (44) 12 9 (75) �0.001
Maximum no. of diarrhea episodes in any 24-h periodb 43 10 (7, 15) 9 0 (0, 9) 12 7 (1, 12) 0.002
Duration of diarrhea at time of enrollment (h)b 43 83 (37, 101) 9 0 (0, 65) 12 34 (1, 87) 0.02
No. (%) of patients with fevera 43 32 (74) 9 6 (67) 12 6 (50) 0.14
Maximum pain level in prior 24 hb,d 39 7 (5, 8) 7 4 (0, 8) 11 8 (5, 10) 0.15
No. (%) of specimens with non-Salmonella pathogens

presenta,e

43 11 (26) 9 6 (67) 12 3 (25) 0.05

Median (IQR) qPCR CT value
Rectal swab 39 30 (26, 33) 0 NA 4 37 (34, 37) 0.002f

Stool 36 29 (25, 31) 0 NA 1 38 0.05f

aP value by the chi-square test across all three groups.
bP value by the Kruskal-Wallis H test across all three groups.
cDefined by the time of onset of either vomiting or diarrhea, whichever was greater.
dPain level was reported by the parents of the participants on a scale ranging from 0 (no pain at all) to 10 (worst pain imaginable) in the 24 h prior to enrollment
(only for patients enrolled in the emergency departments).

eThis included detection of any of the following targets by GPP, the gastroenteritis virus panel, and/or stool culture in any of the specimens (i.e., swab, stool):
adenovirus, astrovirus, norovirus, rotavirus, sapovirus, Aeromonas, Campylobacter, C. difficile, V. cholerae, E. coli O157, ETEC, Shigella, STEC, Yersinia, Cryptosporidium,
Entamoeba, or Giardia.

fMann-Whitney U test for comparison of two groups.
gGPP, gastrointestinal pathogen panel; qPCR, quantitative PCR; NA, not available.

TABLE 5 Analysis of specimens Luminex xTAG GPP positive/bacterial culture negative for Campylobacter spp., Escherichia coli O157,
Salmonella spp., and Shigella spp. on commercial and in-house PCR assays

Bacteria with positive test result on GPP No. of specimens Commercial assay retest result In-house PCR result

Campylobacter spp. 2 Negative NAa

Escherichia coli O157 4 Negative Negative
Salmonella spp. 9 Negative Negative
Shigella spp. 2 Positive Positive
Shigella spp. 1 Negative Negative
aNA, not applicable (our in-house assay did not include primers for Campylobacter spp.).
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and the importance of considering such results with the clinical presentation and code-
tected pathogens in mind (3, 12).

Although we might be underpowered to detect problems with the identification of
E. coli O157 and Shigella spp. by the GPP, the panel identified all culture-positive
participants. The rapid identification of these two pathogens is of considerable value.
Detecting E. coli O157 infection would prompt the withholding or discontinuation of
antibiotics (32) and the reversal of dehydration using parenteral fluids (33–35); the
detection of Shigella would appropriately prompt antibiotic therapy (36, 37). Evidence
supporting this assertion was provided by a study of the BioFire FilmArray GI panel,
which reduced the time to initiation of antimicrobial therapy by 50 h and the time to
the discontinuation of therapy in STEC-infected children by 47 h (12).

Selenite enrichment broth was employed as part of our stool culture protocol to
enhance the identification of Salmonella spp. (38). By comparison, false-negative results
by NAAT may relate to technical issues, including nucleic acid extraction efficiency. Future
iterations of NAAT-based multianalyte syndromic panels should consider protocol modifi-
cations that enhance diagnostic accuracy, including alternative approaches to extraction,
modified amplification or cycling conditions, and the incorporation of additional pathogen
loci to reduce the number of panel-positive/culture-negative results.

Given our data, the existing literature, and the adjustments required for NAAT
assays, one needs to consider how postmarket monitoring of the performance of
multianalyte assays should be performed. Specifically, if laboratories abandon culture
detection of enteric pathogens in favor of multianalyte assays, there is little opportunity
to compare recovery rates between the two methodologies. Hence, the failure to detect
pathogens by multianalyte assays will go unverified. The U.S. Food and Drug Admin-
istration has postmarket surveillance mechanisms for drug safety and efficacy, espe-
cially for those drugs approved via accelerated pathways (39, 40), but no analogous
mechanism exists for diagnostic devices. Our findings urge continuing assessment of
the accuracy of multianalyte assays for bacterial enteric pathogens.

To our knowledge, this is the first study to compare GPP with bacterial culture
employing samples from an entirely pediatric population in a high-income country. It
is also the only study to incorporate the clinical phenotype into the interpretation of
discordant specimens. Our study nonetheless has limitations. Despite our large sample
size, we detected only 64 participants with Salmonella species-positive specimens, and
Campylobacter species-, STEC-, and Shigella species-positive specimens were even less
common. The low prevalence of bacterial enteropathogens has implications for our
reported percent agreement and � calculations. Participants were recruited from only
two western Canadian cities, so our findings cannot be automatically generalized to
locations with a different epidemiology. We, unfortunately, do not have data to enable
calculation of the precise time interval between specimen receipt at the laboratory and
culture setup. It should also be noted that sampling error may have occurred due to the
small volume of nucleic acid extract used and that all specimens underwent a freeze-
thaw cycle; both of these operational elements could explain negative GPP and qPCR
results in the setting of low bacterial loads.

In conclusion, overall GPP results had excellent concordance with those of bacterial
culture, but the PPA was suboptimal for the shared bacterial targets. In particular,
Salmonella species identification with the GPP was prone to false positives and nega-
tives. These results have clinical and public health implications. While the GPP platform
and other NAAT assays have the potential to provide valuable and credible results, their
current accuracy requires additional validation before universal abandonment of cul-
ture diagnostics. Careful consideration of the context of the illness in patients whose
stool tests yield positive results is required.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JCM

.00205-19.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.

Evaluation of an Enteric Syndromic Panel Journal of Clinical Microbiology

June 2019 Volume 57 Issue 6 e00205-19 jcm.asm.org 9

 on M
ay 26, 2019 by N

O
R

M
A

N
 S

H
A

R
P

LE
S

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://doi.org/10.1128/JCM.00205-19
https://doi.org/10.1128/JCM.00205-19
https://jcm.asm.org
http://jcm.asm.org/


ACKNOWLEDGMENTS
We thank the patients and their families for cooperating with our study; Bryanne

Crago and Christina Ferrato (Public Health Laboratory [ProvLab], Alberta Public Labo-
ratories, Calgary, AB, Canada), Judy Qui (Department of Laboratory Medicine and
Pathology, University of Alberta), DynaLIFE Dx Diagnostic Laboratory Services, commu-
nity laboratories, as well as Public Health Laboratory (ProvLab), Alberta Public Labora-
tories, Edmonton and Calgary, especially the bacteriology staff, for their assistance with
receiving, handling, and processing specimens; the emergency department research
nurses and PEMRAP at the Alberta Children’s Hospital for recruiting study participants;
the emergency department bedside nurses for assisting with rectal swab performance;
Nadia Dow and Manasi Rajagopal, as well as the research assistants, research nurses,
and the Little Bit of Help research volunteer program, for their assistance with partic-
ipant recruitment at the Stollery Children’s Hospital; the nurses at Health Link who
responded to calls from across the province for their assistance with participant
recruitment; and Laurel Ryan for her role as a patient adviser. We extend special thanks
to Marie Louie for building the connections that have made our endeavors possible. No
compensation for the assistance of any aforementioned individuals was provided.

This work was supported by the Alberta Provincial Pediatric EnTeric Infection TEam
(APPETITE), which was funded by a grant from the Alberta Innovates-Health Solutions
Team Collaborative Research Innovation Opportunity. APPETITE is also supported
through partnership awards by the Alberta Children’s Hospital Research Institute
(Calgary, AB, Canada) and the Women and Children’s Hospital Research Institute
(Edmonton, AB, Canada). S.B.F. is supported by the Alberta Children’s Hospital Foun-
dation Professorship in Child Health and Wellness. P.I.T. is also supported by grant
number NIH P30DK052574 (ARAC Core, Digestive Diseases Research Core Center). The
Pediatric Emergency Medicine Research Associate Program (PEMRAP) is supported by
a grant from the Alberta Children’s Hospital Foundation. T.K. was supported by summer
studentship grants from the Alberta Health Services Emergency Strategic Clinical
Network and the Alberta Children’s Hospital Research Institute.

The APPETITE team receives financial support from Luminex Molecular Diagnostics,
Austin, TX, USA, and bioMérieux Canada, Inc., St-Laurent, QC, Canada.

APPETITE collaborators include Samina Ali, Department of Pediatrics, University of
Alberta, Edmonton, AB, Canada, and Kimberley Simmonds, Department of Community
Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB,
Canada, and Alberta Ministry of Health, Edmonton, AB, Canada.

REFERENCES
1. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL,

Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United
States—major pathogens. Emerg Infect Dis 17:7–15. https://doi.org/10
.3201/eid1701.091101p1.

2. Crim SM, Iwamoto M, Huang JY, Griffin PM, Gilliss D, Cronquist AB,
Cartter M, Tobin-D’Angelo M, Blythe D, Smith K, Lathrop S, Zansky S,
Cieslak PR, Dunn J, Holt KG, Lance S, Tauxe R, Henao OL, Centers for
Disease Control and Prevention (CDC). 2014. Incidence and trends of
infection with pathogens transmitted commonly through food—
Foodborne Diseases Active Surveillance Network, 10 U.S. sites,
2006 –2013. MMWR Morb Mortal Wkly Rep 63:328 –332.

3. Anderson NW, Tarr PI. 2018. Multiplex nucleic acid amplification testing
to diagnose gut infections: challenges, opportunities, and result inter-
pretation. Gastroenterol Clin North Am 47:793– 812. https://doi.org/10
.1016/j.gtc.2018.07.006.

4. Buss SN, Leber A, Chapin K, Fey PD, Bankowski MJ, Jones MK, Ro-
gatcheva M, Kanack KJ, Bourzac KM. 2015. Multicenter evaluation of the
BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infec-
tious gastroenteritis. J Clin Microbiol 53:915–925. https://doi.org/10
.1128/JCM.02674-14.

5. Duong VT, Phat VV, Tuyen HT, Dung TT, Trung PD, Minh PV, Tu Le TP,
Campbell JI, Le Phuc H, Ha TT, Ngoc NM, Huong NT, Tam PT, Huong DT,
Xang NV, Dong N, Phuong Le T, Hung NV, Phu BD, Phuc TM, Thwaites

GE, Vi LL, Rabaa MA, Thompson CN, Baker S. 2016. Evaluation of Luminex
xTAG gastrointestinal pathogen panel assay for detection of multiple
diarrheal pathogens in fecal samples in Vietnam. J Clin Microbiol 54:
1094 –1100. https://doi.org/10.1128/JCM.03321-15.

6. Albert MJ, Rotimi VO, Iqbal J, Chehadeh W. 2016. Evaluation of the xTAG
gastrointestinal pathogen panel assay for the detection of enteric patho-
gens in Kuwait. Med Princ Pract 25:472– 476. https://doi.org/10.1159/
000447698.

7. Eibach D, Krumkamp R, Hahn A, Sarpong N, Adu-Sarkodie Y, Leva A,
Kasmaier J, Panning M, May J, Tannich E. 2016. Application of a multiplex
PCR assay for the detection of gastrointestinal pathogens in a rural African
setting. BMC Infect Dis 16:150. https://doi.org/10.1186/s12879-016-1481-7.

8. Claas EC, Burnham CA, Mazzulli T, Templeton K, Topin F. 2013. Perfor-
mance of the xTAG(R) gastrointestinal pathogen panel, a multiplex
molecular assay for simultaneous detection of bacterial, viral, and par-
asitic causes of infectious gastroenteritis. J Microbiol Biotechnol 23:
1041–1045. https://doi.org/10.4014/jmb.1212.12042.

9. Spina A, Kerr KG, Cormican M, Barbut F, Eigentler A, Zerva L, Tassios P,
Popescu GA, Rafila A, Eerola E, Batista J, Maass M, Aschbacher R, Olsen
KE, Allerberger F. 2015. Spectrum of enteropathogens detected by the
FilmArray GI panel in a multicentre study of community-acquired gas-
troenteritis. Clin Microbiol Infect 21:719 –728. https://doi.org/10.1016/j
.cmi.2015.04.007.

Kellner et al. Journal of Clinical Microbiology

June 2019 Volume 57 Issue 6 e00205-19 jcm.asm.org 10

 on M
ay 26, 2019 by N

O
R

M
A

N
 S

H
A

R
P

LE
S

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://doi.org/10.3201/eid1701.091101p1
https://doi.org/10.3201/eid1701.091101p1
https://doi.org/10.1016/j.gtc.2018.07.006
https://doi.org/10.1016/j.gtc.2018.07.006
https://doi.org/10.1128/JCM.02674-14
https://doi.org/10.1128/JCM.02674-14
https://doi.org/10.1128/JCM.03321-15
https://doi.org/10.1159/000447698
https://doi.org/10.1159/000447698
https://doi.org/10.1186/s12879-016-1481-7
https://doi.org/10.4014/jmb.1212.12042
https://doi.org/10.1016/j.cmi.2015.04.007
https://doi.org/10.1016/j.cmi.2015.04.007
https://jcm.asm.org
http://jcm.asm.org/


10. Becker SL, Chatigre JK, Gohou JP, Coulibaly JT, Leuppi R, Polman K,
Chappuis F, Mertens P, Herrmann M, N’Goran EK, Utzinger J, von Muller
L. 2015. Combined stool-based multiplex PCR and microscopy for en-
hanced pathogen detection in patients with persistent diarrhoea and
asymptomatic controls from Cote d’Ivoire. Clin Microbiol Infect 21:
e1– e10. https://doi.org/10.1016/j.cmi.2015.02.016.

11. Wessels E, Rusman LG, van Bussel MJ, Claas EC. 2014. Added value of
multiplex Luminex gastrointestinal pathogen panel (xTAG((R)) GPP) test-
ing in the diagnosis of infectious gastroenteritis. Clin Microbiol Infect
20:O182–O187. https://doi.org/10.1111/1469-0691.12364.

12. Cybulski RJ, Jr, Bateman AC, Bourassa L, Bryan A, Beail B, Matsumoto J,
Cookson BT, Fang FC. 2018. Clinical impact of a multiplex gastrointes-
tinal polymerase chain reaction panel in patients with acute gastroen-
teritis. Clin Infect Dis 67:1688 –1696. https://doi.org/10.1093/cid/ciy357.

13. Nicholson MR, Van Horn GT, Tang YW, Vinje J, Payne DC, Edwards KM,
Chappell JD. 2016. Using multiplex molecular testing to determine the
etiology of acute gastroenteritis in children. J Pediatr 176:50 –56.e2.
https://doi.org/10.1016/j.jpeds.2016.05.068.

14. Murphy CN, Fowler RC, Iwen PC, Fey PD. 2017. Evaluation of the BioFire
FilmArray(R) gastrointestinal panel in a midwestern academic hospital.
Eur J Clin Microbiol Infect Dis 36:747–754. https://doi.org/10.1007/
s10096-016-2858-7.

15. Qin X, Klein EJ, Galanakis E, Thomas AA, Stapp JR, Rich S, Buccat AM, Tarr
PI. 2015. Real-time PCR assay for detection and differentiation of Shiga
toxin-producing Escherichia coli from clinical samples. J Clin Microbiol
53:2148 –2153. https://doi.org/10.1128/JCM.00115-15.

16. Freedman SB, Lee BE, Louie M, Pang XL, Ali S, Chuck A, Chui L, Currie GR,
Dickinson J, Drews SJ, Eltorki M, Graham T, Jiang X, Johnson DW, Kellner
J, Lavoie M, MacDonald J, MacDonald S, Svenson LW, Talbot J, Tarr P,
Tellier R, Vanderkooi OG. 2015. Alberta Provincial Pediatric EnTeric In-
fection TEam (APPETITE): epidemiology, emerging organisms, and eco-
nomics. BMC Pediatr 15:89. https://doi.org/10.1186/s12887-015-0407-7.

17. Letourneau S. 2009. Health Link Alberta: a model for successful health
service integration. Healthc Q 13(Spec No):56 – 60.

18. Buchan BW, Olson WJ, Pezewski M, Marcon MJ, Novicki T, Uphoff TS,
Chandramohan L, Revell P, Ledeboer NA. 2013. Clinical evaluation of a
real-time PCR assay for identification of Salmonella, Shigella, Campylo-
bacter (Campylobacter jejuni and C. coli), and Shiga toxin-producing
Escherichia coli isolates in stool specimens. J Clin Microbiol 51:
4001– 4007. https://doi.org/10.1128/JCM.02056-13.

19. Freedman SB, Xie J, Nettel-Aguirre A, Lee B, Chui L, Pang X-L, Zhuo R,
Parsons B, Dickinson JA, Vanderkooi OG, Ali S, Osterreicher L, Low-
erison K, Tarr PI, Chuck A, Currie G, Eltorki M, Graham T, Jiang J,
Johnson D, Kellner J, Lavoie M, Louie M, MacDonald J, MacDonald S,
Simmonds K, Svenson L, Tellier R, Drews S, Talbot J. 2017. Entero-
pathogen detection in children with diarrhoea, or vomiting, or both,
comparing rectal flocked swabs with stool specimens: an outpatient
cohort study. Lancet Gastroenterol Hepatol 2:662– 669. https://doi
.org/10.1016/S2468-1253(17)30160-7.

20. Ferrato C, Chui L, King R, Louie M. 2017. Utilization of a molecular
serotyping method for Salmonella enterica in a routine laboratory in
Alberta Canada. J Microbiol Methods 135:14 –19. https://doi.org/10
.1016/j.mimet.2017.01.018.

21. Anonymous. 2018. xTAG gastrointestinal pathogen panel (GPP) (CE-IVD),
Luminex Corporation, Austin, TX. Accessed 8 December 2018.

22. U.S. Food and Drug Administration. 2007. Statistical guidance on report-
ing results from studies evaluating diagnostic tests— guidance for
industry and FDA staff. https://www.fda.gov/RegulatoryInformation/
Guidances/ucm071148.htm#top. Accessed 31 July 2018.

23. Feuerman M, Miller AR. 2008. Relationships between statistical measures
of agreement: sensitivity, specificity and kappa. J Eval Clin Pract 14:
930 –933. https://doi.org/10.1111/j.1365-2753.2008.00984.x.

24. Freeman K, Tsertsvadze A, Taylor-Phillips S, McCarthy N, Mistry H, Man-
uel R, Mason J. 2017. Agreement between gastrointestinal panel testing
and standard microbiology methods for detecting pathogens in sus-
pected infectious gastroenteritis: test evaluation and meta-analysis in
the absence of a reference standard. PLoS One 12:e0173196. https://doi
.org/10.1371/journal.pone.0173196.

25. Thompson CN, Phan MV, Hoang NV, Minh PV, Vinh NT, Thuy CT, Nga TT,
Rabaa MA, Duy PT, Dung TT, Phat VV, Nga TV, Tu LT, Tuyen HT, Yoshihara
K, Jenkins C, Duong VT, Phuc HL, Tuyet PT, Ngoc NM, Vinh H, Chinh NT,

Thuong TC, Tuan HM, Hien TT, Campbell JI, Chau NV, Thwaites G, Baker
S. 2015. A prospective multi-center observational study of children
hospitalized with diarrhea in Ho Chi Minh City, Vietnam. Am J Trop Med
Hyg 92:1045–1052. https://doi.org/10.4269/ajtmh.14-0655.

26. Patel A, Navidad J, Bhattacharyya S. 2014. Site-specific clinical evaluation
of the Luminex xTAG gastrointestinal pathogen panel for detection of
infectious gastroenteritis in fecal specimens. J Clin Microbiol 52:
3068 –3071. https://doi.org/10.1128/JCM.01393-14.

27. Khare R, Espy MJ, Cebelinski E, Boxrud D, Sloan LM, Cunningham SA, Pritt
BS, Patel R, Binnicker MJ. 2014. Comparative evaluation of two commer-
cial multiplex panels for detection of gastrointestinal pathogens by use
of clinical stool specimens. J Clin Microbiol 52:3667–3673. https://doi
.org/10.1128/JCM.01637-14.

28. Huang RS, Johnson CL, Pritchard L, Hepler R, Ton TT, Dunn JJ. 2016.
Performance of the Verigene(R) enteric pathogens test, Biofire FilmArray
gastrointestinal panel and Luminex xTAG(R) gastrointestinal pathogen
panel for detection of common enteric pathogens. Diagn Microbiol Infect
Dis 86:336–339. https://doi.org/10.1016/j.diagmicrobio.2016.09.013.

29. Liu LJ, Yang YJ, Kuo PH, Wang SM, Liu CC. 2005. Diagnostic value of
bacterial stool cultures and viral antigen tests based on clinical mani-
festations of acute gastroenteritis in pediatric patients. Eur J Clin Micro-
biol Infect Dis 24:559 –561. https://doi.org/10.1007/s10096-005-1373-z.

30. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropatho-
genic Escherichia coli necessary for the production of attaching and
effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A 87:
7839 –7843. https://doi.org/10.1073/pnas.87.20.7839.

31. Bilge SS, Vary JC, Jr, Dowell SF, Tarr PI. 1996. Role of the Escherichia coli
O157:H7 O side chain in adherence and analysis of an rfb locus. Infect
Immun 64:4795– 4801.

32. Freedman SB, Xie J, Neufeld MS, Hamilton WL, Hartling L, Tarr PI, Alberta
Provincial Pediatric Enteric Infection Team, Nettel-Aguirre A, Chuck A,
Lee B, Johnson D, Currie G, Talbot J, Jiang J, Dickinson J, Kellner J,
MacDonald J, Svenson L, Chui L, Louie M, Lavoie M, Eltorki M, Vanderk-
ooi O, Tellier R, Ali S, Drews S, Graham T, Pang XL. 2016. Shiga toxin-
producing Escherichia coli infection, antibiotics, and risk of developing
hemolytic uremic syndrome: a meta-analysis. Clin Infect Dis 62:
1251–1258. https://doi.org/10.1093/cid/ciw099.

33. Ake JA, Jelacic S, Ciol MA, Watkins SL, Murray KF, Christie DL, Klein EJ,
Tarr PI. 2005. Relative nephroprotection during Escherichia coli O157:H7
infections: association with intravenous volume expansion. Pediatrics
115:e673– e680. https://doi.org/10.1542/peds.2004-2236.

34. Hickey CA, Beattie TJ, Cowieson J, Miyashita Y, Strife CF, Frem JC,
Peterson JM, Butani L, Jones DP, Havens PL, Patel HP, Wong CS, Andreoli
SP, Rothbaum RJ, Beck AM, Tarr PI. 2011. Early volume expansion during
diarrhea and relative nephroprotection during subsequent hemolytic
uremic syndrome. Arch Pediatr Adolesc Med 165:884 – 889. https://doi
.org/10.1001/archpediatrics.2011.152.

35. Grisaru S, Ruhl M, Vanderkooi O, Berenger B, Freedman SB. 2018. De-
tection of Shiga toxin producing pathogens in stool samples of children
with hemolytic uremic syndrome—a single center quality assurance
project. Abstr 10th Int Symp Shiga Toxin (Verocytotoxin) Producing
Escherichia coli Infect, Florence, Italy.

36. American Academy of Pediatrics. 2018. Shigella infections, p 723–727. In
Kimberlin DW, Brady MT, Jackson MA, Long SS (ed), Red book: 2018:
report of the Committee on Infectious Diseases, 31st ed, vol 2018.
American Academy of Pediatrics, Itasca, IL.

37. Haltalin KC, Kusmiesz HT, Hinton LV, Nelson JD. 1972. Treatment of acute
diarrhea in outpatients. Double-blind study comparing ampicillin and
placebo. Am J Dis Child 124:554 –561. https://doi.org/10.1001/archpedi
.1972.02110160092010.

38. Boer MD, de Boer RF, Lameijer A, Sterne E, Skidmore B, Suijkerbuijk
AWM, Heck M, van der Zanden A. 2019. Selenite enrichment broth to
improve the sensitivity in molecular diagnostics of Salmonella. J Micro-
biol Methods 157:59 – 64. https://doi.org/10.1016/j.mimet.2018.12.018.

39. Institute of Medicine. 2007. The future of drug safety: promoting and
protecting the health of the public. National Academies Press, Washing-
ton, DC.

40. U.S. Food and Drug Administration. 2017. Postmarket drug and biologic
safety evaluations. https://www.fda.gov/Drugs/GuidanceCompliance
RegulatoryInformation/Surveillance/ucm204091.htm. Accessed 16 March
2019.

Evaluation of an Enteric Syndromic Panel Journal of Clinical Microbiology

June 2019 Volume 57 Issue 6 e00205-19 jcm.asm.org 11

 on M
ay 26, 2019 by N

O
R

M
A

N
 S

H
A

R
P

LE
S

http://jcm
.asm

.org/
D

ow
nloaded from

 

https://doi.org/10.1016/j.cmi.2015.02.016
https://doi.org/10.1111/1469-0691.12364
https://doi.org/10.1093/cid/ciy357
https://doi.org/10.1016/j.jpeds.2016.05.068
https://doi.org/10.1007/s10096-016-2858-7
https://doi.org/10.1007/s10096-016-2858-7
https://doi.org/10.1128/JCM.00115-15
https://doi.org/10.1186/s12887-015-0407-7
https://doi.org/10.1128/JCM.02056-13
https://doi.org/10.1016/S2468-1253(17)30160-7
https://doi.org/10.1016/S2468-1253(17)30160-7
https://doi.org/10.1016/j.mimet.2017.01.018
https://doi.org/10.1016/j.mimet.2017.01.018
https://www.fda.gov/RegulatoryInformation/Guidances/ucm071148.htm#top
https://www.fda.gov/RegulatoryInformation/Guidances/ucm071148.htm#top
https://doi.org/10.1111/j.1365-2753.2008.00984.x
https://doi.org/10.1371/journal.pone.0173196
https://doi.org/10.1371/journal.pone.0173196
https://doi.org/10.4269/ajtmh.14-0655
https://doi.org/10.1128/JCM.01393-14
https://doi.org/10.1128/JCM.01637-14
https://doi.org/10.1128/JCM.01637-14
https://doi.org/10.1016/j.diagmicrobio.2016.09.013
https://doi.org/10.1007/s10096-005-1373-z
https://doi.org/10.1073/pnas.87.20.7839
https://doi.org/10.1093/cid/ciw099
https://doi.org/10.1542/peds.2004-2236
https://doi.org/10.1001/archpediatrics.2011.152
https://doi.org/10.1001/archpediatrics.2011.152
https://doi.org/10.1001/archpedi.1972.02110160092010
https://doi.org/10.1001/archpedi.1972.02110160092010
https://doi.org/10.1016/j.mimet.2018.12.018
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm204091.htm
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm204091.htm
https://jcm.asm.org
http://jcm.asm.org/

	MATERIALS AND METHODS
	Population. 
	Outcome measures. 
	Specimen acquisition. 
	Specimen processing. 
	Confirmatory testing. 
	Statistical analysis. 

	RESULTS
	Primary outcome. 
	Secondary outcomes for Salmonella. 
	Confirmatory testing. 

	DISCUSSION
	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

