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Abstract. Urinary Tract Infections (UTIs) are a severe public health
problem, accounting for more than eight million visits to health care
providers each year. High recurrence rates and increasing antimicrobial
resistance among uropathogens threaten to greatly increase the economic
burden of these infections. Normally, UTIs are diagnosed by traditional
methods, based on cultivation of bacteria on Petri dishes, followed by
a visual evaluation by human experts. The need of achieving faster and
more accurate results, in order to set a targeted and sudden therapy,
motivates the design of an automatic solution in place of the stan-
dard procedure. In this paper, we propose an algorithm that combines a
“bag–of–words” approach with machine learning techniques to recognize
infected plates and provide the automatic classification of the bacterial
species. Preliminary experimental results are promising and motivate the
introduction of a visual word dictionary with respect to using low level
visual features.

Keywords: Color image processing · Clustering techniques · Bag–
of–words · Artificial neural networks · Support vector machines ·
Urinoculture screening

1 Introduction

Urinoculture represents a screening test in the case of hospitalized patients and
pregnant women. For women, the lifetime risk of having a UTI is greater than
50%. Pregnant women seem no more prone to UTIs than other women. How-
ever, when the UTI occurs during pregnancy, it is more likely that the infection
extends to the kidneys, giving rise to more serious pathologies. For this reason,
health care providers routinely screen pregnant women for UTIs during the first
3 months of pregnancy. On the other hand, nosocomial urinary tract infections
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account for up to 40% of all hospital–acquired infections and, most importantly,
nosocomial pathogens causing UTIs tend to have a higher antibiotic resistance
than simple UTIs [1].

From the operational point on view, for the urinoculture test, the urine sam-
ple is seeded on a Petri plate that holds a culture substrate, used to artificially
recreate the environment required for the bacterial growth. There exist many dif-
ferent culture media which allow to perform different kinds of analysis, from iso-
lating specific types of bacteria, to promoting a wide range of microbial growth.
The seeding procedure (streaking) consists on spreading the urine sample over
the whole plate and can be performed both manually or automatically, with an
ad hoc device. Then, the plate is incubated in a controlled environment for a fixed
period of time (16–24 h). After the incubation phase, each plate is visually exam-
ined by a microbiologist with the aim of recognizing the possible presence of bac-
terial colonies and eventually their species and number, adding some more time
to the medical report emission. This common situation significantly departs from
the requirement to have results in quick time, to set a targeted therapy, avoiding
the use of broad–spectrum antibiotics and improving the patient management.

In recent years, significant improvements in biology and medicine applications
and decision support systems [2] have been obtained by using hybrid approaches,
based on the combination of advanced image processing techniques [3,4], and
artificial intelligence methods [5–8]. In fact, the development of automated tools
for results assessment (screening systems) has attracted increasing research inter-
est during the last decade, due to their higher repeatability, accuracy, reduced
staff time, and lower costs [9]. In particular, in [10–14], different methods have
been proposed to automate the uriculture screening, based on image processing
and machine learning techniques. Actually, in [10], after segmentation and back-
ground subtraction, the classification of the infection type is performed using
support vector machines (SVMs) and multilayer perceptron (MLPs), trained
with low level visual features, such as the Cie–Lab color components, and the
average colony dimension.

In this paper, we propose an algorithm that combines a “bag–of–words” app-
roach with machine learning techniques to recognize infected plates and provide
the automatic classification of the bacterial species. A dataset of 753 images
has been collected in partnership with the Microbiology and Virology Labora-
tory of the Careggi Hospital (Florence). The images represent Petri plates that
have been automatically seeded on a chromogenic substrate (Chromagar Orien-
tation) by the Copan WASPLab specimen processor. From the dataset, a visual
word dictionary based on shape and color features has been extracted. Prelimi-
nary experimental results are promising and motivate the introduction of “visual
words” with respect to using low level features (such as color and texture).

The paper is organized as follows. In the next section, we briefly describe
how the image dataset has been collected, before defining the codebook gen-
eration procedure. In Sects. 3 and 4, the automatic infected plate recognition
and infection classification methods are, respectively, presented, also reporting
experimental results. Finally, Sect. 5 collects some conclusions.
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2 Dataset Collection and Codebook Generation

The Microbiology and Virology Laboratory of the Careggi Hospital in Florence is
the Tuscany reference center for microbiological and virological tests, with more
than 250 urinoculture tests performed per day. In the MV–Lab, urine samples
are automatically seeded on a chromogenic substrate (Chromagar Orientation)
by the Copan WASPLab specimen processor. A chromogenic culture ground
exploits the presence of specific enzymes, which are common in bacterial cells,
to produce different colors, depending on the bacterial species; in particular,
Chromagar Orientation allows to distinguish between the following pathogens:

– Escherichia Coli – produces dark pink to reddish colonies;
– Enterococcus – produces turquoise blue colonies;
– Proteus – produces a brown halo;
– Klebsiella, Enterobacater, Serratia, Citrobacter (KESC) – produces metallic

blue colonies;
– Staphylococcus Aureus – produces golden opaque small colonies;
– Staphylococcus Saprophitycus – produces pink opaque small colonies;
– Candida Albicans – produces colorless colonies;
– Streptococcus Agalactiae – produces light blue colonies;
– Pseudomanas Aeuroginos – produces translucent, cream to blue colonies.

A dataset of 753 images of Petri dishes has been collected, gained via the
WASPLab, which are first segmented, in order to detect and remove the culture
ground.

(a) (b) (c) (d)

Fig. 1. Results of the background removal procedure: in (a) and (c) the original images;
in (b) and (d) the result of the background subtraction.

After the segmentation phase, a bag–of–words approach is then applied
to generate a visual codebook, composed by color and shape descriptors.
Bag–of–words is a common way to represent documents in natural language
processing and information retrieval applications. In this model, a sentence or a
document is represented as the collection of its words; only the word frequencies
in the text are considered, disregarding grammatical rules and even the word
flow. The bag–of–words approach is also widely used for image classification,
when visual features are treated as visual words. This involves three main steps;
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firstly, visual features are extracted from the image. Then descriptors – arrays
collecting such features – are built. After this step, images are represented by a
collection of vectors of the same dimension. Finally, descriptors are grouped and
converted to codewords, the analogous of words in text documents. Clustering
algorithms are usually employed to this aim. The set of codewords, belonging to
the same cluster, produces a codebook, i.e. a “word dictionary”. For the present
study, different kind of features (describing color and shape) have been evaluated,
to extract meaningful information from the images of Petri dishes. Based on the
background removal procedure described in [10] (see Fig. 1), a set of foreground
segments have been extracted from each of the 162 images that compose the
training set. Each segment is then represented by a descriptor (feature vector).
The selected features are described in the following.

– Color moments characterize the color distribution of a segment, and they
are scale and rotation invariant. Among the possible color spaces, experi-
mental results have shown that the use of HSV provides better performance.
Three color moments are used, mean (Eq. (1)), standard deviation (Eq. (2))
and skewness (Eq. (3)); they are computed separately for each HSV channel:

mi =
N∑

j=1

1
N

vij (1)

σi =

√√√√ 1
N

N∑

j=1

(vij − mi)
2 (2)

si = 3

√√√√ 1
N

N∑

j=1

(vij − mi)
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where N is the number of pixels in the segment and vij is the value of the
j–th pixel in the i–th color channel.

– The shape of the segments is also a useful characteristic, since bacterial
colonies produced by different types of infections may have different size;
moreover, the shape is important to evaluate the infection severity, because
it allows to distinguish between single and overlapping colonies. Two shape
features have been used, the segment area (A) and the elongation (Eq. (4)):

E =
√

i2
i1

(4)

where i1 and i2 are, respectively, the minor and the major axis of the smallest
bounding ellipse of the segment.

Therefore, for each image segment in the training set, a descriptor has been
computed, in the form:

D = [mH ,mS ,mV , σH , σS , σV , sH , sS , sV , A,E]
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Once the descriptors were extracted, the codebook generation relies on an
unsupervised clustering procedure. The set of codewords obtained in this way
forms the final codebook. In particular, the k–means clustering algorithm1 has
been used to extract the codewords (each word corresponds to a cluster centroid).
Let us first introduce some notations.

Let X be the dataset to be clusterized and let xi ∈ X, for i ∈ {1, ..., N},
with N =| X |. Let C = {c1, c2, ..., cK} be the obtained K disjoint sets, with
c̄k = 1

|ck|
∑

xi∈ck

xi, the centroid of the k–th cluster and X̄ = 1
N

∑
xi∈X

xi the dataset

centroid. The optimal number of clusters K has been selected by evaluating the
best partition among data, according to the four different measures, described
in the following.

– Silhouette (SL) [15]

SL(C) =
1
N

N∑

i=1

s(xi) s(xi) =
(b(xi) − a(xi, cj))

max{b(xi), a(xi, cj)} (5)

where, ∀xi ∈ X, a(xi, cj) is the average distance of the object xi from all the
points belonging to a different cluster cj and b(xi) is the minimum average
distance of xi from all the points belonging to the other clusters.

– Calinski–Harabasz (CH) [16]

CH(C) =
(N− | C |) ∑

ck∈C

| ck | d(c̄k, X̄)

(| C | −1)
∑

ck∈C

∑
xi∈ck

d(xi, c̄k)
(6)

where d(xi, cj) is the average distance of the object xi from all the points
belonging to a different cluster cj .

– Davies–Bouldin (DB) [17]

DB(C) =
1

| C |
∑

ck∈C

max
cl∈C\ck

{
S(ck) + S(cl)

d(c̄k, c̄l))

}
S(ck) =

1
| ck |

∑

xi∈ck

d(xi, c̄k)

(7)
– Gap (G) [18]

G(C) = E∗
N{log(Wk)} − log(Wk) Wk =

k∑

i=1

1
2 | ci |Di (8)

where Di is the sum of the pairwise distance for all the points belonging to
cluster ci and the expected value E∗

N{log(Wk)} is determined by Monte Carlo
sampling from a reference distribution.

The optimal number of clusters, computed in the range [1, 100], is reported
in Table 1.
1 Other clustering methods—such as DBSCAN, OPTICS, SOM—have been tested. k–

means was chosen since it offers the best trade off between simplicity and performance.
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Table 1. The best value of K selected by the four different validity measures, SL, CH,
DB, and G.

SL CH DB G

K∗ 3 3 3 96

We have also tested different values for K within the same range (selecting
K ∈ {16, 28, 45, 68}), in order to check the ability of the chosen metrics to pro-
duce a correct dictionary dimension. The overall codebook generation procedure
is summarized in Fig. 2, whereas, in Fig. 3, an example of the obtained set of
words with respect to a test image is reported.

Fig. 2. Codebook generation schema.

(a) (b)

Fig. 3. In (a), the original image without the background and, in (b), words found
within the image.

3 Infected Plate Recognition

Automatic recognition of infected plates aims at distinguishing between positive
and negative tests, where a positive plate is characterized by the presence of bac-
terial colonies, whereas on negative plates no bacteria are grown. Nevertheless,
sometimes, plates can be considered as negative even if bacterial colonies are
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actually present on the culture medium, especially in the case of atypical infec-
tions that, in specific circumstances, can be considered as a contamination of the
urine sample. The rate between infected and not infected samples is imbalanced,
with a higher prevalence of the latter. Actually, about 70% of the samples are
negative2. Hence, automatically recognizing infected plates with a high accuracy
is fundamental, since it can significantly reduce the biologist workload.

Table 2. Dataset composition (infected plate classification).

Dataset Positive Negative Total

Training set 162 162 324

Test set 84 345 429

In order to detect infected plates, using the codebook generation procedure
previously described, six codebooks, with a different number of words (3, 16, 28,
45, 68, and 96, respectively), have been extracted from images belonging to the
dataset (Table 2). Then, two different classifiers, namely, MLPs and SVMs, have
been trained3, obtaining the results summarized in Table 3.

Table 3. Accuracy gained by SVMs/MLPs based on the different dictionaries.

K 3 16 28 45 68 96

MLP parameters 3–10–2 16–50–2 28–30–2 45–25–2 68–70–2 96–200–2

MLP accuracy 94.63% 94.41% 96.73% 96.2% 96% 95.1%

MLP TP Rate 0.92 0.79 0.91 0.88 0.8 0.82

SVM parameters Poly2 RBF Poly2 Poly2 RBF RBF

(Kernel/C/Gamma) 1/0.3 1/0.1 1/0.2 1/0.3 1/0.1 15/0.4

SVM accuracy 95.57% 93.94% 94.87% 95.33% 95.8% 96.5%

SVM TP rate 0.92 1 0.88 0.88 0.91 0.9

As we can observe from the results in Table 3, the performance of the two
classification models are very similar, with the best accuracy obtained by MLPs
using the codebook with 28 words. However, it is worth noting that, in medical
applications, not only the accuracy of the system is important, but also its
capacity of avoiding false negatives since, actually, a false negative could lead
to ignore the infection and to expose the patient to possible risks. Therefore,
2

For this reason, the training set dimension has been reduced to balance the number of positive
and negative patterns (see Table 2).

3
The MLP structures are described in Table 3. Both hidden and output neurons are sigmoidal.
Two neurons constitute the ouput layer in order to improve the network flexibility in modeling
complicated relationships. All the architectural parameters (for MLPs and SVMs) were chosen
via a trial–and–error procedure and crossvalidation.
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Table 4. Accuracy (a) and confusion matrix (b) obtained by an RBF kernel SVM,
with C = 1 and γ = 0.1, on the test set composed by 429 images.

(a) Accuracy

Number of Images Percentage

Incorrectly Classified 26 6.06 %

Correctly Classified 403 93.94 %

(b) Confusion Matrix

Negative Positive

319 26
0 84

observing the True Positive (TP) rate, the SVM trained using the codebook with
16 words must be preferred with respect to other alternatives. Table 4 collects
detailed results obtained in this case.

4 Infection Species Recognition

Automatic infection classification aims at recognizing the infection strain(s)
present on the infected plates. There is a huge number of different bacterial
strains, which can possibly be present in an urine sample and, as discussed in
Sect. 2, using the Chromagar Orientation medium, nine different bacterial types
can be distinguished. The most common infection is E. Coli, with about 60–70%
of occurrence, whereas all other species are much less frequent. As a consequence,
our image dataset is too small to represent, with statistical significance, all the
nine classes. Actually, for example, only four images of Pseudomanas Aeuroginos
and Proteus, and two of Staphylococcus Saprophitycus are present. Therefore,
the number of classes to be recognized has been reduced, grouping together some
underrepresented classes with similar (color) properties (see Table 5).

Table 5. Dataset composition (infection classification).

Infection classes Training set Test set Total

E. Coli 94 48 142

Enterococcus Spp 26 14 40

KESC 22 12 34

Other (Proteus, S. Aureus, Pseudomonas, Candida) 20 10 30

As it can be observed in Table 5, the dataset is imbalanced; as expected,
E. Coli is highly prevalent, whereas the other classes contain a small number
of samples. From the classification point of view, this is an undesirable situa-
tion and, to address this problem, the training set has been pre–processed and
artificially balanced4. Then, the codebook has been generated using the positive
4

The Weka Class Balancer function has been used to balance the data. This function reweights
the instances in the data so that each class has the same total weight. The total sum of weights
across all instances will be maintained. Only the weights in the first batch of data received by
this filter are changed.
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Table 6. Accuracy gained by SVMs/MLPs based on the different dictionaries.

K 3 16 28 45 68 96

MLP parameters 3–10–4 16–25–4 28–20–4 45–30–4 68–60–4 96–100–4

MLP accuracy 23.8% 88% 88% 90.47% 92.85% 85.71%

SVM parameters RBF Poly2 Poly2 Poly2 Poly2 RBF

(Kernel/C/Gamma) 10/0.2 1/0.6 1/0.1 112/0.1 1/0.3 1/0.2

SVM accuracy 54.7% 73.8% 80.95% 77.38% 82.15% 78.57%

sample images. Actually, six codebooks with a different number of words (3, 16,
28, 45, 68, and 96, respectively) have been extracted from the images of the
dataset (Table 5). Two different classification architectures, MLPs and SVMs,
have been trained, producing the results reported in Table 6.

In this case, the best accuracy has been obtained using the codebook with
68 words. It is worth noting that, differently from the infected plate detection, a
greater number of words seems to be necessary to conveniently characterize the
infection type. This may reflect the more complex nature of this problem (see
Table 7).

Table 7. System overall accuracy and confusion matrix obtained by an SVM with a
polynomial kernel of degree 3, C = 1, γ = 0.1, and by an MLP architecture, with
68–60–4 units.

(a) Accuracy

Number of Images Percentage

Total Number of Images 84

Incorrectly Classified 15 / 6 17.85 / 7.14 %

CorrectlyClassified 59 / 78 82.15 / 92.85 %

(b) Confusion Matrix

E.Coli Enterococcus KESC Other

45 / 47 0 / 0 1 / 0 2 / 1
1 / 1 10 / 13 0 / 0 3 / 0
0 / 0 1 / 1 10 / 11 1 / 0
5 / 0 1 / 3 0 / 0 4 / 7

The accuracy for each single class gained here is very similar to the results
obtained in [10] even if, unfortunately, a precise comparison is not possible due to
the differences in the training dataset and in the classification approach (different
number of classes in the two problems).

Finally, briefly considering the computational complexity of the proposed
approach, we can notice that the image segmentation module (which is out of
the scope of this article) represents the most demanding task, taking 6 to 10 s for
each image, whereas the whole procedure constituted by the two phases of word
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frequency histogram extraction and image classification took 3 s, on average, for
each image5. All the experiment were carried out using an Intel i5 CPU.

5 Conclusions

Urinary tract infections can be caused by many different microbes, including
fungi, viruses, and bacteria. Bacteria are actually the most common cause of
UTIs. The body is usually able to rapidly removing bacteria that enter the uri-
nary tract before they cause symptoms. However, sometimes bacteria overcome
the body natural defenses and, in fact, roughly 150 million of infections occur
annually worldwide. In this paper, an automatic method capable of detecting the
presence of UTIs and to establish their type, was described. The system shows a
good accuracy in distinguishing positive and negative samples, and also a very
good sensitivity. Moreover, the proposed procedure is able to recognize different
infection types with a high accuracy. Unfortunately, some classes are under-
represented, and this lead to group different infection types together (based on
similar colors) in order to obtain a meaningful representation. A larger dataset
(hopefully available soon) could avoid this issue and allow to distinguish among
a higher number of different infections, even with very similar colors.
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