1	A Comparison of the ESwab with Traditional Swabs for the Detection of MRSA Using Two
2	Different Walk-Away Commercial Real Time PCR Methods
3	Suzane Silbert ^{1*}
4	Carly Kubasek ¹
5	Dominic Uy ¹
6	Raymond Widen ¹
7	
8	¹ Esoteric Testing Laboratory, Pathology Department, Tampa General Hospital, Tampa, FL.
9	USA.
10	
11	Running Title: Use of the ESwab for the Detection of MRSA
12	
13	*Corresponding author.
14	Suzane Silbert, PhD
15	Clinical Scientist, Esoteric Testing Lab, Tampa General Hospital.
16	1 Tampa General Circle, Tampa, FL. USA. 33606.
17	Tel: 1-813-844-4261; Fax: 1-813-844-1312; E-mail: ssilbert@tgh.org
18	

19 Abstract

20	The ESwab (Co	opan Diagnostics)	was evaluated	as a nasophar	yngeal specimen	collection	device

- 21 to be used for MRSA detection by GeneXpert[®] and BD MAX[™] MRSA Assays. Different
- 22 MRSA strains and dilutions of each strain were tested in triplicate. The ESwab proved to be a
- 23 suitable collection device for both assays tested.

24

26	Methicilin-Resistant Staphylococcus aureus (MRSA) is a major cause of healthcare
27	acquired infections (1, 2). Early identification of patients with MRSA nasal carriage can be part
28	of an effective infection prevention program (3, 4, 5, 6, 7, 8). There are commercial Real-Time
29	PCR assays that provide MRSA results in less than a couple of hours. The Xpert MRSA® assay
30	(Cepheid, Sunnyvale, CA), which runs exclusively on the GeneXpert® system (Cepheid,
31	Sunnyvale, CA) and, the BD MAX [™] MRSA assay (BD Diagnostics, Québec, Canada)
32	performed on the BD MAX System [™] (BD Diagnostics, Sparks, MD) are examples of these
33	assays (9, 10, 11, 12). Both are sample in answer out tests, allowing fast results, reducing hands-
34	on time and improving laboratory efficiency. This is a great improvement when we compare to
35	culture based methods, which can take up to 72 hours to identify MRSA strains (9,10). Still,
36	PCR based methods require concomitant cultures to recover organisms for epidemiological
37	typing or for further susceptibility testing. For these reasons, sometimes the patient has to be
38	submitted to more than one swab collection, each one to be used in a different lab test.
39	ESwabs (Copan Diagnostics Inc, Murrieta, CA) use a single swab liquid-based collection
40	and transport system with a uniquely designed nylon flocked swab. In this new swab, the
41	organism inoculum is efficiently released into 1mL of Amies liquid making it possible to
42	perform multiple tests (PCR and culture) on the collected sample and avoiding the collection of
43	more than one swab per patient (13, 14, 15, 16,17). The aim of this study was to evaluate and
44	compare the performance of the ESwab and the Traditional Swab (BBL™ CultureSwab™
45	Liquid Stuart, BD Diagnostics, Sparks, MD), recommended by the assay manufactures, for the
46	detection of MRSA using two different Real-Time PCR assays: the Xpert MRSA® (Cepheid)
47	and the BD MAX TM MRSA (BD Diagnostics).

Two different MRSA strains isolated from patients attending Tampa General Hospital (TGH - Tampa, FL) were used in this study. Strains were previously characterized by strain 49 typing at TGH, using the DiversiLab Rep-PCR instrument (bioMérieux, France). Two different 50 clusters were identified: Cluster E and Cluster AB, both frequently isolated in patients attending 51 TGH. Strains were first saved in the Esoteric Testing Lab Bank of Microorganisms and then, 52 recovered in Blood Agar plates (BBL) for the tests. 53

An initial 0.5 MacFarland (1.5 x 10⁸ CFU/mL) suspension of each strain was prepared in 54 5mL of 0.85% physiological saline, followed by seven 10 fold dilutions (1.5 x 10^7 to 10^1 55 CFU/mL) also prepared in saline. Each strain and dilution was tested in triplicate. First, 600µL 56 of each dilution was distributed into six wells of a microtiter plate (100µL/well). Each ESwab 57 and Traditional Swab triplicate was inoculated with 100μ L of the dilution by placing the swab 58 59 into one of the six wells of the prepared microtiter plate, and allowing 10 seconds for the swab to 60 absorb the suspension. After inoculation, swabs were placed into their respective transport medium. Prior to testing, the ESwab tube was vortexed for 5 sec and a 200μ L aliquot from the 61 transport medium was transferred either to the Xpert MRSA® lysis elution buffer or to the BD 62 MAXTM MRSA sample buffer tube. Samples were vortexed again for 5 sec before loading into a 63 MRSA cartridge. The ESwab has a superior absorption capacity than Traditional Swabs; thus, a 64 65 volume greater than 100μ L would have been used if the ESwab itself was transferred directly 66 into the assay buffer. For this reason, a 200µL aliquot from the ESwab transport medium was initially chosen to be used in this study. Traditional swabs were transferred directly into the assay 67 buffer tube and vortexed for 5 sec before loading into a MRSA cartridge. In the end, 96 tests for 68 each Real-Time PCR assay were performed, 48 tests using ESwabs and 48 tests using 69 Traditional Swabs. 70

71	All results from 1.5 x 10^8 to 10^2 CFU/mL dilutions were positive for MRSA, after testing
72	by both Real-Time PCR assays and swab types. The Real-Time PCR threshold (Ct) result values
73	from the same dilution, but different swab types and Real-Time PCR assays were very similar to
74	each other and, as expected, all the Ct values increased inversely proportional to the bacteria
75	concentration. Ct values from triplicate tests were averaged and results are presented in figure 1.
76	The dilution 1.5×10^1 CFU/mL from Cluster E and Cluster AB showed positive results in the
77	three traditional swab samples tested on the BD MAX TM MRSA and in two out of the three
78	traditional swab samples tested on the Xpert MRSA®. The same dilution showed negative
79	results in the three ESwab samples tested on the Xpert MRSA® (Cluster E) and in one out of the
80	three ESwab samples tested on the BD MAX TM MRSA (Cluster AB).

81 The ESwab transference to the ESwab medium results in a 1/10 dilution of the initial 82 inoculums and only 1/5 of that was initially used for the Real-Time PCR assays. Therefore, to approximate the aliquot concentration to at least 1/2 of the original inoculum concentration, these 83 84 negative result tests were repeated using 500µL of the ESwab liquid medium instead of 200µL. MRSA positive results were detected in all of these repeated tests (Table 1). Ultimately, the limit 85 of detection observed from ESwab samples using 500μ L of the ESwab liquid medium (1.5 x 10^{1} 86 CFU/mL) was in line with Xpert MRSA® (10 to 100 CFU/swab) and BD MAX™ MRSA (273 87 88 to 645 CFU/swab) assay analytical sensitivities previously reported by the manufacturers (20, 89 21).

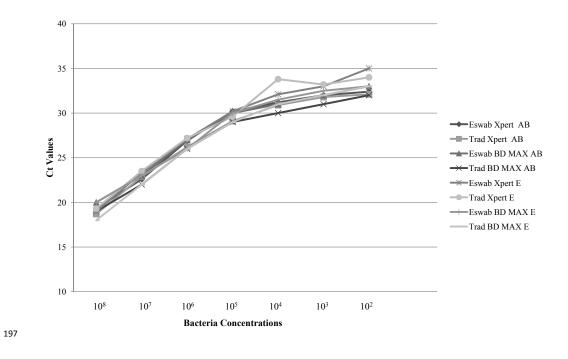
Rapid and accurate identification of MRSA isolates is essential not only for patient care, 90 but also for effective infection control programs to limit the spread of MRSA (1, 4, 6, 8, 18, 19). 91 In the last few years, several commercial rapid tests for detection of MRSA directly from nasal 92 swabs have been developed for use in clinical laboratories (9, 10, 11, 12, 18, 19). Real-Time 93

94	PCR and other molecular tests are gaining popularity as MRSA screening tests, especially
95	because they are faster than culture methods in identifying patients who are candidates for
96	contact precaution at the time of admission. Currently, there are two automated sample in
97	answer out walk away Real-Time PCR assays for MRSA: the Cepheid Xpert MRSA assay
98	performed on the GeneXpert instrument and the BD MAX MRSA Assay performed on the BD
99	MAX instrument. These assays are validated for use only with nasal specimens taken on BBL TM
100	CultureSwab™ Liquid Stuart (BD Diagnostiscs) or Venturi Transystem™ Swab Liquid Stuart
101	(Copan Diagnostics) (20, 21). This means that if further investigations are required on the
102	clinical specimen (strain typing, antibiotic susceptibility tests, or a simple repeat of the test), a
103	second swab from the same patient will have to be collected.

Several studies have been demonstrating the superior absorption and release capacity of 104 105 the ESwab comparing to Traditional Swabs (13, 14, 15, 16, 17, 22, 23, 24). The ESwab is a 106 revolutionary concept because of its ability to offer what standard swabs cannot provide; ESwab 107 elutes the entire sample into 1mL of transport medium, providing identical aliquots of liquid 108 sample suspension that enable laboratories to determine and validate the optimal volume of specimen (and therefore amount of analyte) to utilize in their assay. This is the first report of the 109 use of the ESwab as a collection device system for the two MRSA sample in answer out walk 110 111 away Real-Time PCR assays. The results obtained showed that the ESwab system is a suitable 112 sample collection device alternative for both, Xpert MRSA® and the BD MAX™ MRSA assays. Still, it is important to adjust the volume of eluted specimen to 500 μ L in order to obtain similar 113 114 sensitivities as the Traditional Swabs. Moreover, it is possible to perform different tests (PCR and culture) on the same collected sample, avoiding collection of more than one swab sample 115 116 from the same site, per patient.

117 References

118	1.	Klein E, Smith DL, Laxminarayan R. 2007. Hospitalizations and deaths caused by
119		methicillin-resistant Staphylococcus aureus, United States, 1999-2005. Emerg. Infect. Dis.
120		13 :1840-1846.
121	2.	Pottinger PS. 2013. Methicillin-resistant Staphylococcus infections. Med. Clin. N. Am.
122		97 :601-609.
123	3.	Muto CA, Jernigan, JA, Ostrowsky, BE, Richel, HM, Jarvis, WR, Boyce, JM and Farr,
124		BM. 2003. SHEA guideline for preventing nosocomial transmission of multidrug-resistant
125		strains of Staphylococcus aureus and Enterococcus. Infect. Control Hosp. Epidemiol.
126		24 :362-386.
127	4.	van Trijp MJCA, Melles, DC, Hendriks, DH, Parlevliet, GA, Gommans, M and Ott, A.
128		2007. Successful control of widespread methicillin-resistant Staphylococcus aureus
129		colonization and infection in a large teaching hospital in Ths Netherlands. Infect. Control
130		Hosp. Epidemiol. 28:970-975.
131	5.	Jog S, Cunningham, R, Cooper, S, Wallis, M, Marchbank, A, Vasco-Knight and Jenks,
132		PJ. 2008. Impact of prospective screening for methicillin-resistant Staphylococcus aureus
133		by real-time polymerase chain reaction in patients undergoing cardiac surgery. J. Hosp.
134		Infect. 69 :124-130.
135	6.	Pohfal WE, Goettler, CE, Ramsey, KM, Cochran, MK, Nobles, DL and Rotondo, MF.
136		2009. Active surveillance screening of MRSA and eradication of the carrier state decreases
137		surgical-site infections caused by MRSA. J. Am. Coll. Surg. 208:981-986.
138	7.	Hardy K, Price, C, Szczepura, A, Gossain, S, Davies, R, Stallard, N, Shabir, S,
139		McMurray, C, Bradbury, A and Hawkey, PM. 2010. Reduction in the rate of methicillin-


140	resistant Staphylococcus aureus acquisition in surgical wards by rapid screening for
141	colonization: a prospective, cross-over study. Clin. Microbiol. Infection. 16: 333-339.
142	8. Cookson B, Bonten MJM, MacKenzie FM, Skov RL, Verbrugh HA, Tacconelli E.
143	2011. Methicillin-resistant Staphylococcus aureus (MRSA) screening and decolonization.
144	Internat. J. Antimicrob. Agents. 37: 195-201.
145	9. Rossney AS, Herra CM, Brennan DD, Morgan PM, O'Connell B. 2008. Evaluation of
146	the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay using the Cepheid
147	GeneXpert real-time PCR platform for rapid detection of MRSA from screening specimens.
148	J. Clin. Microbiol. 46:3285-3290.
149	10. Wolk, DM, Picton, E, Johnson, D, Davis, T, Pancholi, P, Ginocchio, CC, Finegold, S,
150	Welch, DF, de Boer, D, Fuller, D, Solomon, MC, Rogers, B, Mehta, MS and Peterson,
151	LR. 2009. Multicenter evaluation of the Cepheid Xpert methicillin-resistant Staphylococcus
152	aureus (MRSA) test as a rapid screening method for detection of MRSA in nares. J. Clin.
153	Microbiol. 47: 758-764
154	11. Hombach H, Pfyffer GE, Roos M, Lucke K. 2010. Detection of methicillin-resistant
155	Staphylococcus aureus (MRSA) in specimens from various body sites: performance
156	characteristics of BD GeneOhm MRSA assay, the Xpert MRSA assay, and broth-enriched
157	culture in an area with a low prevalence of MRSA infections. J. Clin. Microbiol. 48:3882-
158	3887.
159	12. Dalpke AH, Hofko M and Zimmerman S. 2012. Comparison of the BD MAX methicillin-
160	resistant Staphylococcus aureus (MRSA) and the BD GeneOhm MRSA achromopeptidase
161	assay with direct- and enriched-culture techniques using clinical specimens for detection of
162	MRSA, J. Clin. Microbiol. 50:3365-3367.

163	13. Human R, Jones G. 2006. Abstr. ASM 106 th General Meeting, abstr C-107. A New
164	Concept for Transporting Clinical Material on Flocked Swabs in Liquid Amies Medium.
165	14. Silbert S, Santos Pereira A, Marques da Silva F, Inoue FM, Martins Bispo PJ, Lamblet
166	LC, Gales AC, Pignatari AC. 2007. ASM 107th General Meeting, abstr C-368. Complete
167	MRSA Nasal Screening Using a Single, New and Novel Swab Transport System.
168	15. Van Horn KG, Audette CD, Sebeck D, Tucker KA. 2008. Comparison of the Copan
169	ESwab system with two Amies agar swab transport systems for maintenance of
170	microorganism viability. J Clin Microbiol. 46(5):1655-8.
171	16. Smismans A, Verhaegen J, Schuermans A, Frans J. 2009. Evaluation of the Copan
172	ESwab transport system for the detection of methicillin-resistant Staphylococcus aureus: a
173	laboratory and clinical study. Diagn Microbiol Infect Dis. 65(2):108-11.
174	17. De Silva S, Wood G, Quek T, Parrott C, Bennett CM. 2010. Comparison of flocked and
175	rayon swabs for detection of nasal carriage of Staphylococcus aureus among pathology staff
176	members. J Clin Microbiol. 48 (8):2963-4.
177	18. Struelens MJ, Denis O. 2006. Rapid molecular detection of methicillin-resistant
178	Staphylococcus aureus: a cost effective tool for infection control in critical care? Crit. Care
179	10 :128-130.
180	19. Palavecino EL. 2014. Rapid methods for detection of MRSA in clinical specimens.
181	Methods Mol Biol. 1085:71-83
182	20. Cepheid. 2008. Xpert MRSA® package insert. Cepheid. Sunnyvale, CA.
183	21. BD Diagnostics. 2012. BD MAX™ MRSA Assay Package Insert. BD Diagnostics, Québec,
184	Canada.

JCM Accepts published online ahead of print

185	22. Nys S, Vijgen S, Magerman K, Cartuyvels R. 2010. Comparison of Copan eSwab with
186	the Copan Venturi Transystem for the quantitative survival of Escherichia coli,
187	Streptococcus agalactiae and Candida albicans. Eur J Clin Microbiol Infect Dis. 29(4):453-
188	6.
189	23. Saegeman V, Flamaing J, Muller J, Peetermans WE, Stuyck J, Verhaegen J. 2011.
190	Clinical evaluation of the Copan ESwab for methicillin-resistant Staphylococcus aureus
191	detection and culture of wounds. Eur J Clin Microbiol Infect Dis. 30 (8): 943-9.
192	24. Moran-Gilad J, Schwartz D, Navon-Venezia S, Carmeli Y. 2012. Laboratory evaluation
193	of the ESwab transport system for the recovery of carbapenem-resistant Acinetobacter
194	baumannii. Eur J Clin Microbiol Infect Dis. 31(7):1429-33.

	Sample	Volume Used	Ct Values	Volume Used	Ct Values
Cluster E					
Eswab Xpert MRSA®	Sample 1	200µL	Negative	500µL	28.5
Eswab Xpert MRSA®	Sample 2	200µL	Negative	500µL	27.7
Eswab Xpert MRSA®	Sample 3	200µL	Negative	500µL	29.0
Cluster AB					
Eswab BD MAX [™] MRSA	Sample 1	200µL	34.0	-	-
Eswab BD MAX [™] MRSA	Sample 2	200µL	34.0	-	-
Eswab BD MAX [™] MRSA	Sample 3	200µL	Negative	500µL	32.0

Table 1. Real-Time PCR Ct Values of 1.5×10^1 Bacteria Dilution Samples