Clinical Validation of the Lyra Direct HSV 1+2/VZV Assay for Simultaneous Detection and Differentiation of Three Herpesviruses in Cutaneous and Mucocutaneous Lesions

Feinan Fan, Jeffrey Stiles, Albina Mikhлина, Xuedong Lu, N. Esther Babady and Yi-Wei Tang


Updated information and services can be found at:
http://jcm.asm.org/content/52/10/3799

These include:

REFERENCES
This article cites 16 articles, 3 of which can be accessed free at:
http://jcm.asm.org/content/52/10/3799#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»
Clinical Validation of the Lyra Direct HSV 1+2/VZV Assay for Simultaneous Detection and Differentiation of Three Herpesviruses in Cutaneous and Mucocutaneous Lesions

Feinan Fan, Jeffrey Stiles, Albina Mikhlina, Xuedong Lu, N. Esther Babady, Yi-Wei Tang

Department of Laboratory Medicine, Futian Hospital, Guangdong Medical College, Shenzhen, China; Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA

We evaluated the Lyra Direct HSV 1+2/VZV multiplex real-time PCR assay for the detection and differentiation of herpes simplex virus 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV) on 695 consecutive cutaneous and mucocutaneous lesion specimens. The intra-assay and interassay coefficient of variation values for the Lyra assay were 0.29 to 1.30% and 2.33 to 2.61%, respectively. The sensitivities, specificities, and positive and negative predictive values were 93.4 to 95.0%, 96.1 to 96.8%, 78.0 to 80.3%, and 99.0 to 99.1%, respectively, in comparison to those of viral culture. The values were further improved when a resolution analysis was performed with a laboratory-developed PCR assay.

Herpes simplex virus 1 and 2 (HSV-1 and HSV-2, respectively) and varicella-zoster virus (VZV) cause serious cutaneous and mucocutaneous lesions at every stage in immunocompromised patients (1). Due to the similarities in the clinical presentations of infections caused by these three herpesviruses, a clinical diagnosis needs to be confirmed by laboratory testing to prevent misdiagnosis (2). The need for accurate and specific laboratory diagnostics is especially important in immunocompromised patients who may present with atypical lesions confounding the clinical diagnosis and delaying the institution of appropriate antiviral therapy (1, 3, 4). Consequently, etiologic diagnosis and differentiation of HSV-1, HSV-2, and VZV infections is critical for both patient care and infection control (3, 4).

Traditional laboratory methods for the diagnosis of cutaneous and mucocutaneous HSV-1, HSV-2, and VZV infections include the Tzanck smear, direct fluorescent assay (DFA), and cell culture (including shell vial culture) (3). Several reports have been published on the increased sensitivity of real-time PCR assays for detecting HSV/VZV over the traditional methods described above (5–7). Most published molecular assays utilize separate reactions for either HSV or VZV, and limited multiplex formats for the simultaneous detection and differentiation of HSV-1, HSV-2, and VZV have been reported (7–9). Currently, four molecular assays have been cleared by the Food and Drug Administration (FDA) for the detection and/or typing of HSV-1 and HSV-2 in genital and/or oral lesions: the MultiCode HSV-1&2 assay (Luminex Corporation, Austin, TX), the ProbeTec HSV QX amplified DNA assay (BD Diagnostics, Sparks, MD), the IsoAmp HSV assay (BioHelix Corporation, Beverly, MA), and the AmpliVue HSV 1+2 assay (Quidel Corporation, San Diego, CA) (10).

Lyra assay on cutaneous and mucosal specimens, specifically in an immunocompromised oncology patient population.

Clinical samples. Cutaneous or mucocutaneous lesions from symptomatic patients were sampled using a FLOQSwabs (Copan Diagnostics, Inc., Murrieta, CA) and submitted to the laboratory in Remel M4 transport medium (M4RT; Thermo Fisher Scientific, Lenexa, KS) for HSV and/or VZV culture. Six hundred ninety-five consecutive swab specimens were collected between 14 May 2012 and 25 November 2013. Following the completion of the culture setup, the leftover M4RT medium specimens were collected, aliquoted, and stored at −80°C until testing with the Lyra assay and laboratory-developed tests (LDT). The study was granted a waiver of the Health Insurance Portability and Accountability Act (HIPAA) authorization and informed consent (WA0346-13) by the Memorial Sloan-Kettering Cancer Center institutional review board committee.

Tube and shell vial culture. Cell culture was performed by adding 250 μl of M4RT medium to an MRC-5 cell culture tube and an AS49 shell vial (Diagnostic Hybrids, Athens, OH) followed by incubation at 37°C for a maximum of 14 days (5, 7, 9). The culture tubes were read every day to detect cytopathic effects. For the shell vial culture, identification was confirmed using monoclonal antibodies against HSV (Bartels; Trinity Biotech, Wicklow, Ireland) and VZV (Merifluor; Meridian Diagnostic, Inc., Cincinnati, OH) at 24 and 48 h after incubation. The slides were read using an Olympus BX40 microscope with a BX-FLA reflected fluorescent light attachment.

Lyra Direct HSV 1+2/VZV assay. The Lyra Direct HSV 1+2/VZV assay uses multiplex real-time PCR to detect and differenti-
Pre-resolution analysis
the kit. ID, identification.
study. The specimens used for interassay variations were positive controls provided in
Post-resolution analysis
c_travel/among

r

Sensitivity, specificity, PPV, and NPV of the Lyra Direct HSV-1 + 2/VZV assay (n = 694)*

<table>
<thead>
<tr>
<th>Viruses by resolution analysis time</th>
<th>No. of specimens by resulta</th>
<th>Test performance (95% CI) (%)bf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R + L+</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>Pre-resolution analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV-1/2</td>
<td>94d 23</td>
<td>95.0 (88.6–98.3)</td>
</tr>
<tr>
<td>VZV</td>
<td>71 20</td>
<td>93.4 (87.8–99.0)</td>
</tr>
<tr>
<td>Post-resolution analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSV-1</td>
<td>68 2 1</td>
<td>98.6 (92.3–99.8)</td>
</tr>
<tr>
<td>HSV-2</td>
<td>45 2 0</td>
<td>100.0 (92.1–100.0)</td>
</tr>
<tr>
<td>VZV</td>
<td>72 19 0</td>
<td>100.0 (95.0–100.0)</td>
</tr>
</tbody>
</table>

a PPV, positive predictive value; NPV, negative predictive value.
b R, reference; L, Lyra. In the pre-resolution analysis, the tube or shell vial culture results were used as references, and in post-resolution analysis, the majority-matched results among culture, Lyra, and LDT were used as references.
c CI, confidence interval.
d One specimen was positive for both HSV-1 and HSV-2 by the Lyra assay.

VZV assay (n = 11) or by the Argene VZV R-gene ASR (Bio-Mérieux, Durham, NC) for VZV detection (12). For HSV, 5 μl of heated specimen was added to 20 μl of the Cepheid HSV master mix. For VZV, 10 μl of the heated specimen was added to 15 μl of the VZV master mix. The tubes were closed and amplified on the SmartCycler II instrument (Cepheid). All positive amplicons were subsequently cloned and confirmed by sequencing (13).

A total of 695 specimens, of which 57 (8.2%) were genital/anal specimens, were included in the study. They were collected from 340 males (48.9%) and 355 females (51.1%), with an average ± standard deviation age of 52.8 ± 19.6 years. The tube and/or shell vial culture method detected 99 (14.2%) HSV-1/2-positive and 76 (10.9%) VZV-positive swabs. The Lyra Direct assay detected 117 (16.9%) HSV-1/2 and 91 (13.1%) VZV specimens and produced one invalid result, for an invalid result rate of 0.14%. Among the 93 specimens subjected to randomized testing three times on different days, 92 specimens had concordant results, with an overall agreement of 98.9%. One specimen that tested negative in the first two runs was positive for VZV at the third run. The intra-assay % coefficient of variation (%CV) values for the Lyra Direct assay ranged from 0.50 to 0.90% for HSV-1, 0.41 to 1.30% for HSV-2, and 0.29 to 0.75% for VZV (Table 1). The interassay %CV values of the Lyra assay were 2.33% for HSV-1, 2.36% for HSV-2, and 2.61% for VZV (Table 1). In comparison to cell culture, the sensitivity, specificity, and positive and negative predictive values of the Lyra Direct HSV 1 + 2/VZV assay were 95.0%, 96.1%, 80.3%, and 99.1%, respectively, for HSV-1/2 and 93.4%, 96.8%, 78.0%, and 99.2%, respectively, for VZV (Table 2).

There were 53 specimens with discordant results between culture and the Lyra assay. They were tested with two independent real-time PCR LDT. Among them, 10 specimens were culture positive (5 HSV and 5 VZV)/Lyra assay negative, and 43 specimens were culture negative/Lyra assay positive (23 HSV and 20 VZV). Among the 10 culture-positive/Lyra negative specimens, 9 specimens were negative by both LDT PCR assays (4 HSV and 5 VZV). For the 43 Lyra-positive/culture-negative samples, only one of 20 VZV-positive specimens by the Lyra assay was positive by the LDT-PCR. In contrast, among the 23 specimens that were HSV positive by Lyra assay, 19 (82.6%) were positive by the LDT-PCR. In comparison to a combined standard based on the majority results of the viral culture, Lyra, and LDT-PCR assays, the resolved
sensitivity, specificity, and positive and negative predictive values of the Lyra assay were 98.6%, 99.7%, 97.1%, and 99.8%, respectively, for HSV-1, 100%, 99.7%, 95.7%, and 100%, respectively, for HSV-2, and 100%, 96.9%, 79.1%, and 100%, respectively, for VZV (Table 2).

The extraction of nucleic acids from specimen is not always necessary to perform before nucleic acid amplification and detection (14). However, this step increases the hands-on time and the turnaround time to results, raises expenses, and potentially introduces contamination. Sakai et al. (14) reported quick detection of HSV-1, HSV-2, and VZV from skin vesicles and exudates without nucleic acid extraction (14). Furthermore, several reports pointed out that omission of the nucleic acid extraction step prior to real-time PCR resulted in a more rapid and cost-effective assay, with little impact upon the sensitivity of detection (9, 14–16). The Lyra device does not require the time-consuming nucleic acid extraction step and simply treats diluted clinical specimens in a 60°C heat block for 5 min. The equipment needed for the Lyra assay reaction is a heat block that furnishes a constant temperature of 60°C and a molecular real-time PCR platform, like the QuantStudio Dx instrument. The Lyra Direct assay consists of simple dilution-only sample preparation and automatic amplification that can bring accurate and rapid HSV-1/2 and VZV diagnostics to a laboratory that lacks cell culture expertise.

Among the 53 specimens with discordant results between culture and the Lyra assay, the Lyra assay detected more HSV (23 samples) and VZV (20 samples) than did culture (5 HSV and 5 VZV samples). When an LDT PCR was used to resolve the discordant results, among the 43 Lyra-positive/culture-negative specimens, 19 Lyra VZV-positive specimens were negative by the LDT-PCR, and only one of the 20 Lyra HSV-positive specimens was positive by the LDT-PCR. In contrast, among the 23 Lyra HSV-positive specimens, 82.6% were positive by the LDT-PCR (8 HSV-1 and 11 HSV-2). Similar to other molecular assays, our data indicate that the Lyra assay is more sensitive than culture for detecting HSV and VZV in lesion specimens from immunocompromised cancer patients. Previous studies have indicated that molecular methods have a significantly higher sensitivity for VZV detection in a variety of clinical specimen types than that of culture (6, 9, 17). After resolution analysis, the Lyra assay had 19 VZV-positive results (2.7%) that were not confirmed by either culture or LDT PCR. Whether these additional VZV-positive findings are related to carryover contamination that occurred during operation merits further investigation (6).

The Lyra Direct HSV 1 + 2/VZV assay is precise, reproducible, and sensitive for simultaneously detecting and differentiating HSV-1, HSV-2, and VZV in cutaneous and mucocutaneous lesions. Requiring no time-consuming nucleic acid extraction step, the Lyra assay is able to cover three viruses in a single tube with a total sample-to-result time of <60 min.

ACKNOWLEDGMENTS

We thank the Clinical Microbiology Service staff of the Memorial Sloan-Kettering Cancer Center for helping collect the clinical specimens. This work was supported in part by a research contract between the Memorial Sloan-Kettering Cancer Center and the Quidel Corporation (SK2013-0910).

REFERENCES


