The performance of the Enigma MiniLab assay for influenza A and B viruses and respiratory syncytial virus (RSV) was compared to a centralized laboratory respiratory virus panel. The positive and negative percent agreement for influenza A virus, influenza B virus, and RSV were 79.2% (95% confidence interval [95% CI], 57.8 to 92.9%) and 99.4% (95% CI, 98.4 to 99.9), 100% (95% CI, 47.8 to 100%) and 100% (95% CI, 99.3 to 100%), 98.5% (95% CI, 94.6 to 99.8%) and 94.5% (95% CI, 91.9 to 96.4%), respectively.

Influenza virus and respiratory syncytial virus (RSV) infections are common causes of acute respiratory illness resulting in high rates of hospitalizations and lost work or school days (1, 2). Rapid testing has an important role in clinical decision making and could facilitate the rational prescription of antivirals, reduce unnecessary pathology testing and antimicrobial therapy, and allow appropriate institution of infection control and public health interventions.

Previously commercially available rapid tests were based on lateral flow or fluorescent immunochromatographic technology detecting the presence of viral nucleoproteins. However, the performance of such tests is disappointing, with relatively poor sensitivities compared with PCR (3). Consequently, negative samples cannot confidently exclude infection and must be further tested with more-sensitive assays. Additionally, a recent randomized controlled trial evaluating the impact of these rapid tests on prescribing and clinical outcomes found little evidence to support their use (4).

Highly sensitive molecular assays for the detection of influenza virus and RSV have become commercially available and include the GeneXpert (5), Simplexa (6), and Prodesse (7) assays, which all detect influenza A and B viruses and RSV. Commercial assays particularly suited to near patient or the point-of-care setting have also been introduced, including the Alere I Influenza A&B (Alere, Stockport, United Kingdom) (8–10) and Cobas Liat Influenza A/B (Roche, Pleasanton, CA) (11) assays. These have both obtained CLIA (Clinical Laboratory Improvement Amendments) waiver, allowing use of the assay in nontraditional laboratory sites, such as emergency departments, clinic rooms, and pharmacy clinics (12).

The Enigma MiniLab influenza A/B & RSV assay obtained CE-IVD (in vitro diagnostics) designation in January 2014 and is available across Europe. The assay is fully automated, accepting nasopharyngeal swabs directly into a disposable cartridge. Magnetic bead purification and concentration are followed by fluorogenic reverse transcriptase PCR for the qualitative detection of influenza A virus (matrix gene), influenza B virus (nonstructural gene), and RSV (fusion gene). The assay has a running time of 90 min. The system requires less than 2 min of hands-on time and is scalable, with each module operating independently and on demand, meaning that up to six tests can be run concurrently (12). Figure 1 shows the platform in a single-module configuration.

We investigated the diagnostic accuracy, turnaround time, acceptability, and ease of use of the Enigma MiniLab FluAB/RSV assay when operated in a near-patient setting by nonlaboratory staff, compared with a centralized laboratory-based molecular assay.

An Enigma MiniLab machine was placed in a treatment room on a 42-bed ward of Evelina London Children’s Hospital, a 154-bed pediatric hospital in central London, United Kingdom. The ward has six high-dependency beds and accepts patients up to the age of 16 years and most respiratory admissions.

Clinicians were advised to test children with signs or symptoms of respiratory tract infection, including bronchiolitis, pneumonia, or influenza-like illness (ILI). Duplicate nasopharyngeal swabs were obtained for testing; however, no instruction was provided on the order in which to obtain the samples. One sample was tested in the hospital centralized virology laboratory using the xTAG Respiratory Virus Panel (RVP) Fast version 2 (Luminex Corp., Austin, TX, USA). The other sample was tested using the ward-based Enigma MiniLab platform by a trained operator (nurse or doctor). Both assays were performed in accordance with the manufacturers’ instructions. For the Enigma MiniLab assay, the sample was collected into 1 ml Sigma-Virocult (Medical Wire & Equipment, Corsham, United Kingdom), and for the xTAG RVP, the sample was collected into 1 ml universal transport me-
Two samples were resolved as negative by GX testing; one sample was not available for further testing.

Five samples were resolved as positive and 16 as negative by GX testing; eight samples were not available for further testing.

One sample was not available for further testing.

Four samples were resolved as positive and one was resolved as negative by GX testing; one sample was not available for further testing.

The positive percent agreement (PPA) and negative percent agreement (NPA) and 95% confidence interval (95% CI) are shown.

Influenza A 18 4b 6c 539 81.8 (59.7–94.8) 98.9 (97.6–99.6)
Influenza B 5 1d 0 561 100 (47.8–100) 99.8 (99–100)
RSV 125 29f 3f 410 97.7 (93.3–99.5) 93.4 (90.7–95.5)

a The positive percent agreement (PPA) and negative percent agreement (NPA) and 95% confidence interval (95% CI) are shown.
b One sample was resolved as positive and three were resolved as negative by GeneXpert (GX) testing.
c Four samples were resolved as positive and one was resolved as negative by GX testing; one sample was not available for further testing.
d One sample was not available for further testing.
e Five samples were resolved as positive and 16 as negative by GX testing; eight samples were not available for further testing.
f Two samples were resolved as negative by GX testing; one sample was not available for further testing.
developed reverse transcription-PCR (RT-PCR) to 1.7 h for the
in a previous study (13). This could explain the different sensitivity value of 100% reported
ing in the Northern Hemisphere during the 2013-2014 season. This issue highlights the importance of
manufacturers’ conducting post-market surveillance studies and
responding to changes in circulating strains.

Although the PPA for RSV was excellent, the NPA was slightly lower at 94.5% with 24 potential false-positive results. Residual sample was not available in eight of these cases, and the xTAG RVP result was taken to be the correct result; however, this may not be the case, and this presumption may have resulted in an underestimation of the NPA. Nevertheless, false-positive results can be problematic for patient management, since patients with false-positive results may be housed in the same area as patients with true positive results.

The failure rate of 5.6% was higher than expected, although this was due to user error on only three occasions. The manufacturer has since made some modifications to the platform so the failure rate would be expected to be lower than this figure. As the cartridge is designed to be a closed system, thus minimizing any contamination, once loaded, the sample cannot be extricated from the cartridge. This prevents retesting in the event of a sample failure, and a new specimen must be obtained. The failure rate is comparable to that seen with the xTAG RVP assay, with a total of 317 out of 3,921 (8.1%) of samples needing to be retested due to various reasons.

The centralized laboratory test was performed according to demand (at least daily increasing to twice daily if there were sufficient samples). This, together with the multistep, hands-on nature of the xTAG RVP test, resulted in a median turnaround time of just over 24 h. This could potentially result in delay in prescribing antiviral therapy and complicates the allocation of respiratory isolation rooms. The Enigma MiniLab assay takes just 90 min to provide a result; however, this may be longer than some clinicians and patients are willing to wait, particularly in high-patient-throughput settings such as the emergency department. These turnaround times are similar to those reported by Chu and colleagues in a retrospective analysis of the impact of introducing a rapid PCR for influenza virus and RSV (15). They found that the turnaround time was reduced from 25.2 h using a laboratory-developed reverse transcription-PCR (RT-PCR) to 1.7 h for the rapid PCR assay. The authors also noted a significant reduction in the length of time of oseltamivir prescription.

A further consideration is the ability of the centralized laboratory test to detect a broad range of pathogens in addition to influenza virus and RSV. In a setting where clinicians have become accustomed to receiving results for a panel of targets, this may lead to the point-of-care test functioning as an accompanying screening assay rather than as a replacement test for the broad panel. Clearly, use in this scenario will have important implications for the assay’s cost-effectiveness. While modeling data suggest that the identification of influenza virus in the emergency department and other settings using rapid multiplex PCR testing is a cost-effective strategy (16, 17), there are few studies that have investigated this prospectively.

Limitations of this study include the inability to resolve 10 of the discrepant samples due to insufficient residual sample; in these cases, the true result was taken as the xTAG RVP result; however, this might not be the case, and it may have led to an underestimation of the sensitivity for the Enigma MiniLab assay. Additionally, this is a single-center experience and would benefit from collaboration with other centers. Clinicians were not given any instruction on how to obtain the samples and in what order, this could have affected the performance characteristics of either of the assays.

As with all molecular assays, there is a risk that these tests might miss the identification of novel strains, which are not targeted by the primers and probes.

The current model of managing most presumptive infectious diseases involves the administration of empirical antimicrobials rather than pathogen-directed use (18). Rapid assays, such as the Enigma MiniLab assay, may have the potential to influence clinical decision making at the point of need and may result in a reduction in unnecessary antibiotic use, targeted use of antiviral drugs for influenza virus (and potentially also for RSV in the future), and rational use of isolation facilities.

**ACKNOWLEDGMENTS**

We are grateful to the nursing and clinical staff who participated in the study. We are grateful to Jane Tozer for administrative support and Rebecca Glover for comments on the draft manuscript.

The study was funded by Enigma Diagnostics Ltd. The study was supported by the NIHR Collaboration for Leadership in Applied Health Research and Care South London at King’s College Hospital NHS Foundation Trust.

We have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
FUNDING INFORMATION

Enigma Diagnostics Ltd provided funding to Sam T Douthwaite, Charlotte Walker, Elisabeth J Adams, Catherine Mak, Andres Vecino Ortiz, Nuria Martinez-Alier, and Simon D Goldenberg.

REFERENCES