Improving Oral Human Papillomavirus Detection Using Toothbrush Sampling in HIV-Positive Men Who Have Sex with Men

Jason J. Ong, Tim Read, Marcus Chen, Sandra Walker, Matthew Law, Catriona Bradshaw, Suzanne M. Garland, Sepehr N. Tabrizi, Alyssa Cornall, Andrew Grulich, Jane Hocking and Christopher K. Fairley

Published Ahead of Print 9 April 2014.
Improving Oral Human Papillomavirus Detection Using Toothbrush Sampling in HIV-Positive Men Who Have Sex with Men

Jason J. Ong, Tim Read, Marcus Chen, Sandra Walker, Matthew Law, Catriona Bradshaw, Suzanne M. Garland, Sepehr N. Tabrizi, Alyssa Cornall, Andrew Grulich, Jane Hocking, Christopher K. Fairley

Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia; Melbourne Sexual Health Centre, Melbourne, Australia; Central Clinical School, Monash University, Clayton, Sydney, Australia; Kirby Institute, University of New South Wales, Sydney, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia; Regional HPV Lab Net Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Australia; Murdoch Children’s Research Institute, Parkville, Australia

Pre- and postabrasion oral rinse samples (ORS) and a toothbrush sample detected human papillomavirus (HPV) DNA in at least one sample among 45 (26%) of 173 HIV-positive men who have sex with men. There was moderate agreement for HPV genotype detection between the preabrasion and postabrasion ORS (κ = 0.49; 95% confidence interval [CI], 0.37 to 0.61). There was good agreement between postabrasion ORS and toothbrushes (κ = 0.70; 95% CI, 0.60 to 0.80). The sensitivities for HPV genotypes detected were 80% (95% CI, 69 to 88) for preabrasion ORS, 65% (95% CI, 54 to 76) for postabrasion ORS, and 75% (95% CI, 63 to 84) for toothbrushes.

Human papillomavirus (HPV) causes some forms of oropharyngeal cancer, most commonly in the lingual and palatine tonsils or in the base of the tongue (1, 2). It is estimated that high-risk (hr) HPV is detected in more than half of the patients with this form of cancer, the most common genotype being HPV-16 (3, 4). The incidence of oropharyngeal cancer has increased in younger individuals, and the proportion of these tumors associated with HPV continues to rise (5–8).

Currently, there is no universally agreed-on method of oral sampling for the detection of HPV DNA. The most common method is using an oral rinse swirl or gargle to obtain an oral rinse sample (ORS) (9–12). Alternatives include using a flocked nylon swab (13), a biopsy specimen (14), a cytobrush (11, 15), or oral mucosal scraping (16). An untested sampling method is obtaining an ORS immediately after brushing one’s teeth and gums. A study by our group found the likelihood of detecting oral HPV fell in a linear fashion by about 14% with each additional hour after brushing the teeth, suggesting that abrasion of oral mucosa may improve the collection of infected cells in an oral rinse (13). This finding suggests that current sampling techniques may be improved by prior epithelial abrasion similar to that used for anogenital HPV detection in men (17). The detection of HPV seems to vary widely depending on the sampling method and the detection methods, with prevalence rates ranging from 7% to 45% even within similar populations (18). It remains unclear whether one sampling method is superior to another for the detection of oral HPV.

Men who have sex with men (MSM) attending the Melbourne Sexual Health Centre (MSHC) HIV clinic from December 2012 to August 2013 were recruited. In the single clinic visit, participants provided 3 samples for HPV detection and genotyping. The first sample was a preabrasion ORS that involved swishing and gargling 20 ml of a sterile saline solution in the oral cavity for 20 to 30 s and then spitting it into a sterile specimen cup. The postabrasion ORS was collected directly after each participant brushed his teeth with a new toothbrush (Dentitex, medium-grade bristles); other than the brushing, the process was identical to that for obtaining the preabrasion ORS. The toothbrush was then placed in 10 ml of phosphate-buffered saline (PBS) and rotated.

The resuspended cells from the toothbrush and ORS were centrifuged for 10 min at 14,000 × g and subsequently resuspended in 400 µl of PBS. An aliquot of 200 µl was extracted by the automated MagNA Pure 96 isolation and purification system (Roche Molecular Systems) using DNA and the Viral NA Small Volume kit. Following nucleic acid isolation, each sample was initially assessed for DNA adequacy with a quantitative PCR for a 260-bp fragment of the human beta-globin gene using 10 pmol each of beta-globin primers GH20 (5’-GAAGGCGCAAGGACAGTGAC-3’) and PCO4 (5’-CAACTTCATCCACGTTCACC-3’) and 2 pmol of the adapted probe PCO3 (5’-FAM-ACACACTGTGTTCACTAGC-TAMRA-3’; FAM indicates 6-carboxyfluorescein, and TAMRA indicates 6-carboxytetramethyl rhodamine) (19). Samples which were HPV positive by PCR-enzyme-linked immunosorbent assay (ELISA) (20) were subsequently genotyped by the Linear Array (LA) HPV genotyping test (Roche Diagnostics) (21, 22), with modification as described previously (23, 24). Samples which were HPV positive by PCR-ELISA but negative by the LA test were amplified using the more sensitive HPV SPF10-LiPA 25 assay version 1 (25). hr-HPV genotypes were defined as such according to recent International Agency for Research on Cancer nomenclature (26).

The PCR-ELISA utilized the well-established Li consensus primers PGMY09/PGMY11 (27, 28) combined with sensitive de-
Overall, beta-globin, a measure of sample adequacy, was positive for 170 (98%) of the toothbrush samples. Twenty-three different individuals were positive in 173 (100%) samples for pre- and postabrasion ORS and toothbrushes, and 32% were current smokers.

Ninety-four percent of them were currently on antiretroviral therapy (ART), with a median duration of ART of 6.4 (2.0–31) years. They had an average duration of HIV infection of 11.8 years (range, 2 to 31 years) and a mean current CD4 count of 260 cells/μl. Ninety-one percent of them had a suppressed viral load (VL < 200 copies/ml). The established sensitivity of this assay in the laboratory is 10 copies per reaction for the mucosal types detected.

When an individual with any HPV genotype detected was used as the unit of comparison, each sampling method missed 20 to 35% of detections compared to the 3 sample methods combined (Table 2). We examined the level of agreement for specific HPV genotype detection using an HPV L1 generic probe and captured on streptavidin-coated plates (Roche Biochemicals) with the bound hybrid detected by an antidigoxigenin peroxidase conjugate by use of the colorimetric substrate 3-ethylbenzthiazoline-6-sulfonate (ABTS) (20). The established sensitivity of this assay in the laboratory is 10 copies per reaction for the mucosal types detected.

### TABLE 1 Any HPV genotype detected by preabrasion ORS, postabrasion ORS, and toothbrushes

<table>
<thead>
<tr>
<th>Sample type and result</th>
<th>Negative (N)</th>
<th>Positive (P)</th>
<th>Sensitivity (% [95% CI])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preabrasion ORS HPV^−</td>
<td>140</td>
<td>0</td>
<td>128 (95% CI, 80–178)</td>
</tr>
<tr>
<td>Preabrasion ORS HPV^+</td>
<td>0</td>
<td>33</td>
<td>73 (58–85)</td>
</tr>
<tr>
<td>Postabrasion ORS HPV^−</td>
<td>132</td>
<td>9</td>
<td>128 (95% CI, 80–178)</td>
</tr>
<tr>
<td>Postabrasion ORS HPV^+</td>
<td>8</td>
<td>24</td>
<td>71 (56–84)</td>
</tr>
<tr>
<td>Toothbrush HPV^−</td>
<td>130</td>
<td>9</td>
<td>128 (95% CI, 80–178)</td>
</tr>
<tr>
<td>Toothbrush HPV^+</td>
<td>10</td>
<td>24</td>
<td>76 (61–87)</td>
</tr>
</tbody>
</table>

a The unit of comparison is an individual with any HPV genotype detected.

Sensitivity was calculated using positivity from any sample as the reference.

b Number of HPV genotypes detected in pre- and/or postabrasion ORS and/or toothbrush sample.

c Mean age of the participants was 52 years (range, 23 to 87 years). They had an average duration of HIV infection of 11.8 years (range, 2 to 31 years) and a mean current CD4 count of 260 cells/μl. Ninety-one percent of them had a suppressed viral load (VL < 200 copies/ml). The established sensitivity of this assay in the laboratory is 10 copies per reaction for the mucosal types detected.

### TABLE 2 Any HPV genotype detected by preabrasion ORS, postabrasion ORS, and toothbrushes

<table>
<thead>
<tr>
<th>Sample type and result</th>
<th>Negative (N)</th>
<th>Positive (P)</th>
<th>Sensitivity (% [95% CI])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preabrasion ORS HPV^−</td>
<td>5,303</td>
<td>0</td>
<td>5,288 (95% CI, 15)</td>
</tr>
<tr>
<td>Preabrasion ORS HPV^+</td>
<td>0</td>
<td>60</td>
<td>80 (69–88)</td>
</tr>
<tr>
<td>Postabrasion ORS HPV^−</td>
<td>5,281</td>
<td>33</td>
<td>5,288 (95% CI, 26)</td>
</tr>
<tr>
<td>Postabrasion ORS HPV^+</td>
<td>22</td>
<td>27</td>
<td>65 (54–76)</td>
</tr>
<tr>
<td>Toothbrush HPV^−</td>
<td>5,280</td>
<td>27</td>
<td>5,288 (95% CI, 19)</td>
</tr>
<tr>
<td>Toothbrush HPV^+</td>
<td>26</td>
<td>30</td>
<td>75 (63–84)</td>
</tr>
</tbody>
</table>

a The unit of comparison is detection of a specific HPV genotype. Linear Array detects 37 HPV genotypes (6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 45, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 81, 82, 82v, 83, 84, and 89), and SPF10-LiPA detects 25 HPV genotypes (6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 43, 44, 45, 51, 52, 53, 54, 56, 58, 59, 66, 68, 73, 70, and 74).

b Sensitivity was calculated using positivity from any sample as the reference.

c Number of HPV genotypes detected in pre- and/or postabrasion ORS and/or toothbrush sample.

DNA-ELISA but negative in Linear Array genotyping; these samples were also tested for HPV genotype by the SPF10-LiPA assay. The cell number estimation performed by the comparison of crossing points from the real-time beta-globin PCR with known standards showed no differences between the cell numbers obtained from HPV-positive and -negative samples (see Table S1 in the supplemental material).

Overall, 45/173 (26%; 95% CI, 20 to 33%) men had detectable HPV of any genotype in at least 1 of the 3 samples. Twenty-three participants had samples collected which were positive in the HPV DNA-ELISA but negative in Linear Array genotyping; these samples were also tested for HPV genotype by the SPF10-LiPA assay. Twenty-six of 173 (15%; 95% CI, 10 to 20%) men had detectable hr-HPV DNA, 8 (5%; 95% CI, 2 to 9%) of which were HPV-16. Fifteen of 26 (58%; 95% CI, 37 to 77%) had 1 high-risk genotype, 5 (19%; 95% CI, 7 to 39%) had 2 high-risk genotypes, and 6 (23%; 95% CI, 9 to 44%) had 3 high-risk genotypes.

When an individual with any HPV genotype detected was used as the unit of comparison, each sampling method missed 24 to 29% of detections compared to the 3 sample methods combined (Table 1). When a specific HPV genotype was used as the unit of comparison, each sampling method missed 20 to 35% of detections compared to the 3 sample methods combined (Table 2). We examined the level of agreement for specific HPV genotype detection using an HPV L1 generic probe and captured on streptavidin-coated plates (Roche Biochemicals) with the bound hybrid detected by an antidigoxigenin peroxidase conjugate by use of the colorimetric substrate 3-ethylbenzthiazoline-6-sulfonate (ABTS).
tion between the 3 samples. There was moderate agreement observed between the preabrasion and postabrasion ORS (κ = 0.49; 95% CI, 0.37 to 0.61) and between the preabrasion ORS and toothbrushes (κ = 0.53; 95% CI, 0.41 to 0.64). There was good agreement for HPV detection between the postabrasion ORS and toothbrushes (κ = 0.70; 95% CI, 0.60 to 0.80).

This is the first study to compare simultaneous testing of ORS with oral abrasion and its effect on the sensitivity of oral HPV detection. Results from a single ORS can miss a significant number of oral HPV genotypes. For natural history studies that are reliant on using ORS, differences in HPV detection across time points may result in lower-than-expected HPV prevalence or in inaccurate estimates of its incidence and persistence. The moderate agreement seen between the three sample methodologies may explain the wide variability of HPV prevalence depending on what sample method is used (18).

The limitations of this study include the study being undertaken in a single center and limited generalizability to HIV-negative populations. The study also had limited power to detect differences in the sampling methods because of the relatively low prevalence. We share the same limitation as other studies where the detection of HPV DNA does not necessarily mean that there is active infection. Testing for HPV RNA to detect active infection may address this in a future study. The two genotyping assays utilized have different analytical performance characteristics and were used to reduce false-negative results, and our beta-globin results indicated that the methods we used obtained adequate sample volumes. However, future studies should be performed to establish the best method of detection and genotyping in such diagnostic situations.

Our findings suggest that multiple sampling methods may be needed to maximize oral HPV detection.

ACKNOWLEDGMENT

The study was funded by the NHMRC program (grant 568971).

REFERENCES


